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SUPPLEMENTARY RESULTS

Supplementary Note 1 | Mathematical analysis of the polyhedral topologies composed of
a single chain.

Suppose a polyhedron P is composed of a single polymer chain. Then P can be naturally
represented with the digraph D(P) whose vertices are the end-points of segments and its arcs
follow the orientations of the segments. Since the arcs of D(P) appear in pairs, D(P) is an
Eulerian digraph, moreover, the segments of the polymer chain correspond to an Eulerian
tour T in D(P). In order for P to be stable, T must fulfill the following conditions for every
vertex u of D(P):

(i) after T enters u from a vertex v, it does not immediately continue (return) to v;
(i)  after T passesuas v — u — w, it later neither passes u as v — u — w nor as

W—>U—>V.

Conditions (i) and (ii) are illustrated in Supplementary Fig. 1.
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Supplementary Figure 1 | Constraints for allowed types of vertices for stable polyhedra.

(a-c) Non-allowed paths that lead to the unstable vertex, shown in an example of a vertex
with 4 converging edges, which is also relevant for vertices of other types. This type of
connection does not lock all paths of the vertex. (d-f) Examples of two types of allowed
connections in the vertices converging four (d,e) and three edges (f).

If (i) and (ii) hold for a vertex u we say that u is stable (with respect to T). If every
vertex of D(P) is stable (with respect to T) then T is called stable. Hence a realization of a
polyhedron P with a single polymer chain corresponds to a stable Eulerian tour in D(P).

Let now G be an arbitrary connected graph. Then the double of G is the graph G'
obtained from G by replacing each of its edges with two parallel edges. Such a pair of edges
will be called a double edge. Call a graph G realizable (with a single-chain self-assembling
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polypeptide) if its double G' contains a stable Eulerian tour. We point out that an Eulerian
tour T is completely defined with the sequence of its edges. That is, a start (and an end) of T
is not considered as a property of T. With this convention, condition (i) implies that the arc
corresponding to the first segment of a polymer chain and the arc corresponding to its last
segment must not be on the same double edge.

If G contains a vertex of degree 1 or a vertex of degree 2, then it is not realizable. Hence
we next look to cubic graphs, that is the graphs whose every vertex is of degree 3, so that
every vertex of the double of G is of degree 6. (Note that the tetrahedron is the smallest cubic
graph.) For a cubic graph, a test whether it is realizable can be simplified using the following
observation.

Lemma 1: Let T be an Eulerian tour in the double of a graph G and let u be a vertex of
degree 3in G. Then u is stable (w. r. t. T) if and only if (i) is fulfilled for u.

Proof: We only need to show that (ii) holds for u provided (i) is true. Suppose on the
contrary that (ii) does not hold. Then together with subsections v — u — w, the tour T either
contains the subsection v — u — w once more or the subsection w — u — v. Since u is of
degree 3 in G, and hence of degree 6 in the double of G, T must enter u once more, say from

X. But then, since all the other edges are already used, T must return to x, a contradiction with
the assumption that (i) holds for u.

Using Lemma 1 we next prove that every cubic graph (in particular every cubic
polyhedron) is realizable.

Theorem 1: All connected cubic graphs are realizable.

Proof: Let G’ be the double of G. Let m be the number of edges of G, so that G’ has 2m
edges. Call consecutive arcs of an Eulerian tour that traverse the edges of a double edge one
after the other a bad pair. By Lemma 1 it suffices to prove that G’ admits an Eulerian tour
with no bad pair. Since every vertex of G’ is even (of degree 6), G’ contains an Eulerian tour.
Select an arbitrary tour in G’, say

T=->V,> >V, >V
and let s be the number of bad pairs of T. If s=0 there is nothing to be proved. Hence

suppose thats >1. We may without loss of generality assume (because we can start the tour
in any vertex) that T begins withv, - v, - v, =v, —--- . Select an index i such that v, =v,

and such that i > 3 is as small as possible. Note that such an index exists because the degree

of v, is at least 2. Observe also that i >5 and thatv,,, #V,,v, . Consider now the sequence

i+1

T'=v, 5V, >V, DV, > >V, >V, >V, >V, >V,

i+1 i+2

It is straightforward to see that T’ is an Eulerian tour in G’. The bad pair v; >V, >V, =V,

=V, DV,

of T is no longer a bad pair in T’. Moreover, the second arc Vv, =V, does not form a bad pair
with v, —»v,, as well as not the arcs v, -»Vv,andVv, —>V,. Any other bad pair of T’

corresponds to a bad pair in T. It follows that T” has at most s—1 bad pairs. Repeating the
procedure we end up with an Eulerian tour with no bad pair.

We now treat stable Eulerian tours in the key object of this paper, the tetrahedron.



Theorem 2: Up to symmetries, the double of the tetrahedron admits exactly three stable
Eulerian tours. More precisely, the tetrahedron can be composed from a single polymer chain
in exactly one of the following three ways (Supplementary Fig. 2):

(1) 1,2,3,1,2,4,3,1,4,3,2,4,1
(i) 1,2,3,1,2,43,2,41,3,41
@)y 1,2,4,1,2,3,4,1,3,2,4,3,1.
(i)1,2,3,1,2,4,3,1,4,3,2,4,1 (i) 1,2,3,1,2,4,3,2,4,1,3,4,1 (iii) 1,2,4,1,2,3,4,1,3,2,4,3,1

Supplementary Figure 2 | Topological solutions of self-assembling tetrahedron from a
single polypeptide chain. A tetrahedron can be composed from a single polymer chain in
exactly one of the three illustrated ways. We designed the polypeptide chain TET12
according to the topology (i).

Proof: Let T be the graph of the tetrahedron. We need to classify the stable Eulerian
tours in its double T’. To do it, recall that by Lemma 1 we only need to check condition (i) for
the vertices of T’. Since T’ is a 6-regular graph, an Eulerian tour in T” enters (and exits) each
of its vertices three times. Therefore, only two types of vertices are possible (Supplementary
Fig. 3):

P2A — combining two parallel and one antiparallel segments
A3 - combining three antiparallel segments.

P2A A3

AN

Supplementary Figure 3 | Two types of vertices existing in a cubic polyhedron. The
number of incoming and outcoming helices have to be equal.

Denote the vertices of T (and hence also of T”) with 1, 2, 3, 4, and let D be a stable
Eulerian tour. It is not difficult to see that there are only three possibilities for vertices: there
are four A3 vertices, there are four P2A vertices, or there is one A3 and three P2A vertices.
We treat them one by one.



Case 1: All the vertices are A3.

Suppose first that D contains a cycle of length 3. By symmetry, we may assume that D starts
with 1, 2, 3, 1. Since vertex 1 is of type A3, we necessarily have D=1, 2, 3,1, 4, ... Inthe
first subcase assume D continues to 2. Then, having in mind that all vertices are A3 and that
D has no bad pair, we must necessarily have D =1, 2, 3,1, 4, 2, 1 3, ... Continuing with 4,
the vertex 1 would be a dead end, hence we necessarily have D=1, 2,3,1,4,2,13,2,4,3,
4, ..., acontradiction as D contains a bad pair. In the second subcase assume D continues to
3. ThenD=1,2,3,1,4,3,2,... If Dcontinuesto 1,thenD=1,2,3,1,4,3,2,1, 3,4, 2, 4,
..., a contradiction, while if D continuesto 4,then D =1,2,3,1,4,3,2,4, 1, 3,4, 2,1. But
now the first and the last arc of D form a bad pair.

Suppose that D contains no cycle of length 3. Then we may assume that D starts with 1,
2,3,4,1. ThenD=1,2,3,4,1,3, 2, ... Dcannot continue with 1 because it has no 3-cycle,
henceD=1,2,3,4,1,3,2,4,3, ..., 50 we have found a 3-cycle.

We have thus proved that D cannot contain only type A3 vertices.

Case 2: All the vertices are P2A.
As in Case 1, it is easy to argue that D has at least one cycle of length 3. Hence, by
symmetry, we may assume that D starts with 1, 2, 3, 1. If D continues with 2, then by case
analysis we infer that D must necessarily be:
(@ 1,2,3,1,2,4,3,1,4,3,2,41
In the case when If D continues with 4, case analysis shows that D is one of the
following:
() 1,2,3,1,4,3,1,2,4,3,2,4,1
() 1,2,3,1,4,3,2,4,1,2,4,3,1
d1,2,3,1,4,3,2,4,3,1,2,4,1.
Apply the permutation (1 2 4 3) to (b) and perform a corresponding shift to find out that
(b) is the same (up to symmetries) stable Eulerian tour. Similarly, apply (1 3 4 2) to (c) and (1
4)(2 3) to (d) to conclude that also (c) and (d) are the same as (a). This case thus gives us (i).

Case 3: One vertex is A3, three vertices are P2A.
It is again not difficult to see that D contains at least one 3-cycle. Suppose first that D does
not contain the cycle on vertices 1, 2, 4. Then we may assume that D starts with 1, 2, 3, 1. But
then it must continue with 2, 4. Moreover, by the case assumption, the next vertex is 3, and
all the rest is fixed. We conclude that D is necessarily
(@ 1,2,3,1,2,4,3,2,4,1,3,4, 1.
This gives the tour (ii). Assume next that D starts with 1, 2, 4, 1. Then case analysis
gives us the following two possibilities:
(b) 1,2,4,1,2,3,4,1,3,2,4,3,1
() 1,2,4,1,3,2,4,3,1,2,3,4, 1.
Apply the permutation (1 2 4)(3) to (c) and a corresponding shift to get that (b) and (c)
are the same (up to symmetries) tours and we have found the tour (iii).

To conclude the proof note that (i) is clearly different from (ii) and from (iii) since (i)
was obtained in a different case than (ii) and (iii). Finally, (ii) is different from (iii) because
the Eulerian tour (iii) contains a cycle consisting of three consecutive vertices - the cycle 1, 2,
4, 1 —all of which double edges are parallel. There is no such cycle in the Eulerian tour (ii).

In order to predict applicability of our approach beyond the tetrahedron (alias triangular
pyramid), we computed the number of stable Eulerian tours in the double of several
additional, potentially interesting polyhedra: the square pyramid, the triangular bipyramid,
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the triangular prism, the square prism (alias cube), and the square bipyramid (alias
octahedron). In order to support our theoretical approach, computations were performed also
on the double of the triangular pyramid. All enumerations were done with respect to the
symmetries of the corresponding polyhedron. The obtained results are collected in
Supplementary Table 1, where (i) and (ii) denote the two defining conditions for stable
Eulerian tours and the symbols A and P indicate that Eulerian tours have only antiparallel and
parallel segments, respectively. Hence the last two columns list the number of stable Eulerian
tours with only antiparallel and parallel segments, respectively. The computed data indicates
that the variety of stable Eulerian tours becomes relatively large when dealing with objects
bigger than the tetrahedron.



Supplementary Table 1 | Number of stable Eulerian tours in the double of some
polyhedra. Note that the data for the triangular pyramid supports Theorem 2. The double of
none of the first five polyhedra admits a stable Eulerian tour with only parallel segments, the
reason being that each of these polyhedra contains vertices of degree 3. On the other hand, in
the square bipyramid each vertex is of degree 4 and its double admits 275 stable Eulerian
tours with all segments parallel. (i) and (ii) denote the two defining conditions for stable
Eulerian tours and the symbols A and P indicate that Eulerian tours have only antiparallel and
parallel segments, respectively.

Polyhedron number | (i) + (i) | (i) + (i) | (i) + (i)
of edges +A +P
triangular pyramid 6 3 0 0
(tetrahedron)
square pyramid 8 82 5 0
triangular bipyramid 9 470 0 0
triangular prism 9 25 2 0
square prism 12 40 0 0
(cube)
square bipyramid 12 22246 0 275
(octahedron)




Supplementary Table 2 | List of the recombinant polypeptide amino acid sequences.
Linkers SGPG between peptide segments are underlined. Sequences from vector are double

underlined.
Name / peptide Amino acid sequence
sequence
TET12 MYHHHHHHSRAGMKQLEKELKQLEKELQAIEKQLAQLQWKAQARKKKLAQLKKKLQASG
PGSPEDE IQQLEEE I AQLEQKNAALKEKNQALKYGSGPG
SGPGQLEDKVEELLSKNYHLENEVARLKKLVGSGPGMKQLEKE
APH-P3-BCR- LKQLEKELQAIEKQLAQLQWKAQARKKKLAQLKKKLQASGPG
GCNg,-APH-P7- SGPGQLEDKVEELLSKNYHLENEVARLKKLVGSGPG
GCNg,-P4-P5-P8- SGPGSPEDENAALEEK I AQLKQKNAALKEE 1QA
-P6 LEYGSGPGSPEDK I AQLKEENQQLEQK IQALKEENAALEYGSGPG
SGPGSPEDKNAALKEE I QALEEENQALEEK IAQLKYG
SGTS
TET11 MYHHHHHHSRAGMKQLEKELKQLEKELQAIEKQLAQLQWKAQARKKKLAQLKKKLQASG
PGSPEDE IQQLEEE I AQLEQKNAALKEKNQALKYGSGPG
SGPGQLEDKVEELLSKNYHLENEVARLKKLVGSGPGMKQLEKE
APH-P3-BCR- LKQLEKELQAIEKQLAQLQWKAQARKKKLAQLKKKLQASGPG
GCNg,-APH-P7- SGPGQLEDKVEELLSKNYHLENEVARLKKLVGSGPG
GCNg,-P4-P5-P8- SGPGSPEDENAALEEK I AQLKQKNAALKEE IQA
LEYGSGPGSPEDK I AQLKEENQQLEQK I QALKEENAALEYGSGPG
SGTS
TET12Scr MYHHHHHHSRAGOL EDKVEELLSKNYHLENEVARLKKLVGSGPGMKQLEKELKQLEKEL

GCNy;-APH-APH-
P3-BCR- P7-GCNg-
-P5-P8-BCR-P6

QATEKQLAQLQWKAQARKKKLAQLKKKLQASGPGMKQLEKELKQLEKELQAIEKQLAQL
QWKAQARKKKLAQLKKKLQASGPGSPEDE IQQLEEE I AQLEQKNAALKEKNQALKYGSG
PG SGPG
SGPGQLEDKVEELLSKNYHLENEVARLKKLVGSGPG
SGPGSPEDENAALEEK I AQLKQKNAALKEE I1QA

LEYGSGPGSPEDK I AQLKEENQQLEQK IQALKEENAALEYGSGPG

SGPGSPEDKNAALKEE I QALEEENQALEEK 1AQLKYG
SGTS

TET12SplitYFP

CYFP- APH-P3-
-GCNg,-APH-
-GCNg-P4-P5-P8-
-P6-NYFP

MYHHHHHHSRAGDKQKNG IKVNFK I RHN 1 EDGSVQLADHYQQNTP 1 GDGPVLLPDNHYL
SYQSALSKDPNEKRDHMVLLEFVTAAG I TLGMDELYKSGSGMKQLEKELKQLEKELQAI
EKQLAQLQWKAQARKKKLAQLKKKLQASGPGSPEDE I QQLEEE I AQLEQKNAALKEKNQ

ALKYGSGPG SGPGQLEDKVEELL
SKNYHLENEVARLKKLVGSGPGMKQLEKELKQLEKELQA I EKQLAQLQWKAQARKKKLA
QLKKKLQASGPG SGPGQLEDKVEELL
SKNYHLENEVARLKKLVGSGPG SGPG

SPEDENAALEEKIAQLKQKNAALKEEIQALEYGSGPGSPEDKIAQLKEENQQLEQKIQA
LKEENAALEYGSGPG SGPGSPED
KNAALKEE 1 QALEEENQALEEKIAQLKYGSGSGVSKGEELFTGVVP ILVELDGDVNGHK
FSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFGYGLQCFARYPDHMKQHDFFK
SAMPEGYVQERT I FFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGN I LGHKLEYN
YNSHNVY IMASGTS

TET11SplitYFP

CYFP- APH-P3-
-GCNg-APH-
-GCNg-P4-P5-P8-
-NYFP

MYHHHHHHSRAGDKQKNG IKVNFK I RHN 1 EDGSVQLADHYQQNTP 1GDGPVLLPDNHYL
SYQSALSKDPNEKRDHMVLLEFVTAAG I TLGMDELYKSGSGMKQLEKELKQLEKELQAI
EKQLAQLQWKAQARKKKLAQLKKKLQASGPGSPEDE I QQLEEE I AQLEQKNAALKEKNQ

ALKYGSGPG SGPGQLEDKVEELL
SKNYHLENEVARLKKLVGSGPGMKQLEKELKQLEKELQA I EKQLAQLQWKAQARKKKLA
QLKKKLQASGPG SGPGQLEDKVEELL
SKNYHLENEVARLKKLVGSGPG SGPG

SPEDENAALEEK IAQLKQKNAALKEE 1 QALEYGSGPGSPEDK 1 AQLKEENQQLEQK QA
LKEENAALEYGSGPG SGSGVSKG
EELFTGVVP I LVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTT
FGYGLQCFARYPDHMKQHDFFKSAMPEGYVQERT I FFKDDGNYKTRAEVKFEGDTLVNR
IELKG IDFKEDGN I LGHKLEYNYNSHNVY IMASGTS




Supplementary Figures 4-11
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Supplementary Figure 4 | Helical wheel diagram for parallel and antiparallel coiled-coil
dimers. The sequence of seven amino acid residues (heptad repeat) is denoted by positions
abcdefg. Positions a and d are typically occupied by hydrophobic residues forming a
hydrophobic core. Positions e and g are frequently occupied by charged residues that by the
formation of interhelical electrostatic interactions direct the parallel or antiparallel helix

orientation. Stabilizing interactions between residues of the two helices are denoted by
arrows.



Supplementary Figure 5 | Molecular model of the folded tetrahedron TET12. The model
was prepared by using the MODELLER® program as described in the online methods
section. Scale bar below the model indicates 5 nm.
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Supplementary Figure 6 | Analysis of the orthogonality of the designed coiled-coil pair
combinations used for the construction of the tetrahedron. CD spectra of synthetic
peptides (a), orthogonal peptide pairs (b) or non-orthogonal peptide pairs (c) at concentration
of 25 uM in 20 mM Tris, pH 8.0, were recorded at 20°C. Spectra are the average of three
scans.
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Supplementary Figure 7 | Purification of polypeptides TET12, TET12splitYFP, variants
with deleted (TET11) and scrambled (TET12scr) segment order. (a) Polypeptide TET12
(M,y = 53,391 Da) was expressed in the form of inclusion bodies (1), which were purified by
chelating chromatography (2) and RP-HPLC (3). (b) SDS-PAGE of the purified polypeptides
TET12 (1), TET11 (My, = 49,381 Da) (2), TET12scr (M, = 53,391 Da) (3), TET12splitYFP
(M,, = 80,810 Da) (4) and TET11splitYFP (M,, = 76,800 Da) (5). SDS-PAGE was performed
on a 12 % separation gel under non-reducing conditions and proteins were stained with a
solution of Coomassie brilliant blue R (Sigma).
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Supplementary Figure 8 | Formation of aggregates produced by dialysis at high, 10 pM
TET12 polypeptide concentration. The hydrodynamic diameters above 80 nm were
determined by DLS in three independent experiments with the calculated mean value + s.d.
of 100.2 £+ 20.4 nm. Representative histogram of one experiment is shown.

13



stalned tetrahedra

stained tetrahedra with nanogoid bead attached to one vertex

Supplementary Figure 9| Tetrahedral particles visualized by TEM. Samples of self-
assembled polypeptide tetrahedra were either stained with uranyl (a,b) or uranyl staining was
used after 1.8-nm nanogold beads were bound to one vertex of the tetrahedron via (His)s
peptide tag (c-f). Self-assembling procedures were performed by slow refolding of denatured
polypeptide TET12. The samples were positively stained using either a short time (a) or a
long time (b) staining procedure. Tetrahedral structures were obtained by slow refolding of
chemically denatured polypeptide (c,d) or by slow annealing of temperature denatured
polypeptide TET12 (e). Polypeptide structures were labeled by nanogold and subsequently
stained with uranyl, for a short time (c,e) or a long time (d). (f) TET12splitYFP formed
tetrahedral structures. Scale bars, 5 nm.
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Supplementary Figure 10|Se|f-assemb|y of TET12 at high concentration forms a
network rather than discrete structures. TET12 was dialyzed at high concentration (10
uM) from 6 M GdnHCI against 20 mM Tris buffer, pH 8.5 and 150 mM NaCl. Sample was
imaged by TEM using uranyl staining. Self-assembly at high concentration reveals the
formation of network due to intermolecular interactions with the complementary segments
from the other molecules. Scale bar, 20 nm.

15



1.004

-

S

§ 0.75+

=

=

.5 0501 —a— TET12

® 0.25- - TET11
T —e— TET12scr

0.0

L)
0 1 2 3 4 5 6
GdnHCI concentration (M)

Supplementary Figure 11 | Decreased stability of structures formed by TET12 variants
with incomplete (TET11) or scrambled (TET12scr) coiled-coil-building segments in
comparison to TET12 nanostructures. Stability of the assembled material at low, 100 nM
polypeptide concentration followed by concentration of samples to 4 UM was determined
from the dependence of the molar ellipticity at 222 nm in addition of GdnHCI from 0 to 6 M.
Values are expressed as means of triplicate measurements. Error bars indicate the s.d. of the
measurements.
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