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SUPPLEMENTARY RESULTS 
 
 
 
 
Supplementary Note 1│Mathematical analysis of the polyhedral topologies composed of 
a single chain. 
 

Suppose a polyhedron P is composed of a single polymer chain. Then P can be naturally 
represented with the digraph D(P) whose vertices are the end-points of segments and its arcs 
follow the orientations of the segments. Since the arcs of D(P) appear in pairs, D(P) is an 
Eulerian digraph, moreover, the segments of the polymer chain correspond to an Eulerian 
tour T in D(P). In order for P to be stable, T must fulfill the following conditions for every 
vertex u of D(P): 

 
(i) after T enters u from a vertex v, it does not immediately continue (return) to v;  
(ii) after T passes u as wuv →→ , it later neither passes u as wuv →→  nor as 

vuw →→ .  
 
Conditions (i) and (ii) are illustrated in Supplementary Fig. 1.  
 

 

 

Supplementary Figure 1│Constraints for allowed types of vertices for stable polyhedra. 
(a-c) Non-allowed paths that lead to the unstable vertex, shown in an example of a vertex 
with 4 converging edges, which is also relevant for vertices of other types. This type of 
connection does not lock all paths of the vertex. (d-f) Examples of two types of allowed 
connections in the vertices converging four (d,e) and three edges (f). 
 

If (i) and (ii) hold for a vertex u we say that u is stable (with respect to T). If every 
vertex of D(P) is stable (with respect to T) then T is called stable. Hence a realization of a 
polyhedron P with a single polymer chain corresponds to a stable Eulerian tour in D(P).  

Let now G be an arbitrary connected graph. Then the double of G is the graph G' 
obtained from G by replacing each of its edges with two parallel edges. Such a pair of edges 
will be called a double edge. Call a graph G realizable (with a single-chain self-assembling 
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polypeptide) if its double G' contains a stable Eulerian tour. We point out that an Eulerian 
tour T is completely defined with the sequence of its edges. That is, a start (and an end) of T 
is not considered as a property of T. With this convention, condition (i) implies that the arc 
corresponding to the first segment of a polymer chain and the arc corresponding to its last 
segment must not be on the same double edge. 

 
If G contains a vertex of degree 1 or a vertex of degree 2, then it is not realizable. Hence 

we next look to cubic graphs, that is the graphs whose every vertex is of degree 3, so that 
every vertex of the double of G is of degree 6. (Note that the tetrahedron is the smallest cubic 
graph.) For a cubic graph, a test whether it is realizable can be simplified using the following 
observation.  

 
Lemma 1: Let T be an Eulerian tour in the double of a graph G and let u be a vertex of 

degree 3 in G. Then u is stable (w. r. t. T) if and only if (i) is fulfilled for u.  
Proof: We only need to show that (ii) holds for u provided (i) is true. Suppose on the 

contrary that (ii) does not hold. Then together with subsections wuv →→ , the tour T either 
contains the subsection wuv →→  once more or the subsection vuw →→ . Since u is of 
degree 3 in G, and hence of degree 6 in the double of G, T must enter u once more, say from 
x. But then, since all the other edges are already used, T must return to x, a contradiction with 
the assumption that (i) holds for u.  

 
Using Lemma 1 we next prove that every cubic graph (in particular every cubic 

polyhedron) is realizable. 
 
Theorem 1: All connected cubic graphs are realizable.  
Proof: Let G’ be the double of G. Let m be the number of edges of G, so that G’ has 2m 

edges. Call consecutive arcs of an Eulerian tour that traverse the edges of a double edge one 
after the other a bad pair. By Lemma 1 it suffices to prove that G’ admits an Eulerian tour 
with no bad pair. Since every vertex of G’ is even (of degree 6), G’ contains an Eulerian tour. 
Select an arbitrary tour in G’, say  

1221 vvvvT m →→→→=   
and let s be the number of bad pairs of T. If 0=s , there is nothing to be proved. Hence 
suppose that 1≥s . We may without loss of generality assume (because we can start the tour 
in any vertex) that T begins with →=→→ 1321 vvvv  . Select an index i such that 2vvi =  
and such that 3≥i  is as small as possible. Note that such an index exists because the degree 
of 2v is at least 2. Observe also that 5≥i  and that 211 ,vvvi ≠+  . Consider now the sequence 

12212142121' vvvvvvvvvvvT miiii →→→→→→→→→→→→= ++−−  . 
It is straightforward to see that T’ is an Eulerian tour in G’. The bad pair 1321 vvvv =→→  
of T is no longer a bad pair in T’. Moreover, the second arc 21 vv → does not form a bad pair 
with 12 +→ ivv  as well as not the arcs 14 vv → and 21 vv → . Any other bad pair of T’ 
corresponds to a bad pair in T. It follows that T’ has at most 1−s  bad pairs. Repeating the 
procedure we end up with an Eulerian tour with no bad pair. 
 
 

We now treat stable Eulerian tours in the key object of this paper, the tetrahedron.  
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Theorem 2: Up to symmetries, the double of the tetrahedron admits exactly three stable 
Eulerian tours. More precisely, the tetrahedron can be composed from a single polymer chain 
in exactly one of the following three ways (Supplementary Fig. 2):  

 
(i) 1, 2, 3, 1, 2, 4, 3, 1, 4, 3, 2, 4, 1  
(ii) 1, 2, 3, 1, 2, 4, 3, 2, 4, 1, 3, 4, 1 
(iii) 1, 2, 4, 1, 2, 3, 4, 1, 3, 2, 4, 3, 1.   
 

 

Supplementary Figure 2│Topological solutions of self-assembling tetrahedron from a 
single polypeptide chain. A tetrahedron can be composed from a single polymer chain in 
exactly one of the three illustrated ways. We designed the polypeptide chain TET12 
according to the topology (i). 
 
 

Proof: Let T be the graph of the tetrahedron. We need to classify the stable Eulerian 
tours in its double T’. To do it, recall that by Lemma 1 we only need to check condition (i) for 
the vertices of T’. Since T’ is a 6-regular graph, an Eulerian tour in T’ enters (and exits) each 
of its vertices three times. Therefore, only two types of vertices are possible (Supplementary 
Fig. 3): 
 
P2A – combining two parallel and one antiparallel segments 
A3 – combining three antiparallel segments. 

 

Supplementary Figure 3│Two types of vertices existing in a cubic polyhedron. The 
number of incoming and outcoming helices have to be equal. 
 

 
Denote the vertices of T (and hence also of T’) with 1, 2, 3, 4, and let D be a stable 

Eulerian tour. It is not difficult to see that there are only three possibilities for vertices: there 
are four A3 vertices, there are four P2A vertices, or there is one A3 and three P2A vertices. 
We treat them one by one.  
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Case 1: All the vertices are A3.  

Suppose first that D contains a cycle of length 3. By symmetry, we may assume that D starts 
with 1, 2, 3, 1. Since vertex 1 is of type A3, we necessarily have D = 1, 2, 3, 1, 4, … In the 
first subcase assume D continues to 2. Then, having in mind that all vertices are A3 and that 
D has no bad pair, we must necessarily have D = 1, 2, 3, 1, 4, 2, 1 3, … Continuing with 4, 
the vertex 1 would be a dead end, hence we necessarily have D = 1, 2, 3, 1, 4, 2, 1 3, 2, 4, 3, 
4, …, a contradiction as D contains a bad pair. In the second subcase assume D continues to 
3. Then D = 1, 2, 3, 1, 4, 3, 2, … If D continues to 1, then D = 1, 2, 3, 1, 4, 3, 2, 1, 3, 4, 2, 4, 
…, a contradiction, while if D continues to 4, then D = 1, 2, 3, 1, 4, 3, 2, 4, 1, 3, 4, 2, 1. But 
now the first and the last arc of D form a bad pair.  

Suppose that D contains no cycle of length 3. Then we may assume that D starts with 1, 
2, 3, 4, 1. Then D = 1, 2, 3, 4, 1, 3, 2, … D cannot continue with 1 because it has no 3-cycle, 
hence D = 1, 2, 3, 4, 1, 3, 2, 4, 3, …, so we have found a 3-cycle.  

We have thus proved that D cannot contain only type A3 vertices.  
 
Case 2: All the vertices are P2A.  

As in Case 1, it is easy to argue that D has at least one cycle of length 3. Hence, by 
symmetry, we may assume that D starts with 1, 2, 3, 1. If D continues with 2, then by case 
analysis we infer that D must necessarily be:  

(a) 1, 2, 3, 1, 2, 4, 3, 1, 4, 3, 2, 4, 1    
In the case when If D continues with 4, case analysis shows that D is one of the 

following:  
(b) 1, 2, 3, 1, 4, 3, 1, 2, 4, 3, 2, 4, 1 
(c) 1, 2, 3, 1, 4, 3, 2, 4, 1, 2, 4, 3, 1 
(d) 1, 2, 3, 1, 4, 3, 2, 4, 3, 1, 2, 4, 1. 
Apply the permutation (1 2 4 3) to (b) and perform a corresponding shift to find out that 

(b) is the same (up to symmetries) stable Eulerian tour. Similarly, apply (1 3 4 2) to (c) and (1 
4)(2 3) to (d) to conclude that also (c) and (d) are the same as (a). This case thus gives us (i).  

 
Case 3: One vertex is A3, three vertices are P2A.  

It is again not difficult to see that D contains at least one 3-cycle. Suppose first that D does 
not contain the cycle on vertices 1, 2, 4. Then we may assume that D starts with 1, 2, 3, 1. But 
then it must continue with 2, 4. Moreover, by the case assumption, the next vertex is 3, and 
all the rest is fixed. We conclude that D is necessarily 

(a) 1, 2, 3, 1, 2, 4, 3, 2, 4, 1, 3, 4, 1. 
This gives the tour (ii). Assume next that D starts with 1, 2, 4, 1. Then case analysis 

gives us the following two possibilities:  
(b) 1, 2, 4, 1, 2, 3, 4, 1, 3, 2, 4, 3, 1 
(c) 1, 2, 4, 1, 3, 2, 4, 3, 1, 2, 3, 4, 1. 

Apply the permutation (1 2 4)(3) to (c) and a corresponding shift to get that (b) and (c) 
are the same (up to symmetries) tours and we have found the tour (iii).  

 
To conclude the proof note that (i) is clearly different from (ii) and from (iii) since (i) 

was obtained in a different case than (ii) and (iii). Finally, (ii) is different from (iii) because 
the Eulerian tour (iii) contains a cycle consisting of three consecutive vertices - the cycle 1, 2, 
4, 1 – all of which double edges are parallel. There is no such cycle in the Eulerian tour (ii). 
 
 

In order to predict applicability of our approach beyond the tetrahedron (alias triangular 
pyramid), we computed the number of stable Eulerian tours in the double of several 
additional, potentially interesting polyhedra: the square pyramid, the triangular bipyramid, 
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the triangular prism, the square prism (alias cube), and the square bipyramid (alias 
octahedron). In order to support our theoretical approach, computations were performed also 
on the double of the triangular pyramid. All enumerations were done with respect to the 
symmetries of the corresponding polyhedron. The obtained results are collected in 
Supplementary Table 1, where (i) and (ii) denote the two defining conditions for stable 
Eulerian tours and the symbols A and P indicate that Eulerian tours have only antiparallel and 
parallel segments, respectively. Hence the last two columns list the number of stable Eulerian 
tours with only antiparallel and parallel segments, respectively. The computed data indicates 
that the variety of stable Eulerian tours becomes relatively large when dealing with objects 
bigger than the tetrahedron. 
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Supplementary Table 1│Number of stable Eulerian tours in the double of some 
polyhedra. Note that the data for the triangular pyramid supports Theorem 2. The double of 
none of the first five polyhedra admits a stable Eulerian tour with only parallel segments, the 
reason being that each of these polyhedra contains vertices of degree 3. On the other hand, in 
the square bipyramid each vertex is of degree 4 and its double admits 275 stable Eulerian 
tours with all segments parallel. (i) and (ii) denote the two defining conditions for stable 
Eulerian tours and the symbols A and P indicate that Eulerian tours have only antiparallel and 
parallel segments, respectively. 

 

 

 
Polyhedron number 

of edges 
(i) + (ii) (i) + (ii) 

+ A 
(i) + (ii) 

+ P 
triangular pyramid 

(tetrahedron) 
6 3 0 0 

square pyramid 8 82 5 0 
triangular bipyramid 9 470 0 0 

triangular prism 9 25 2 0 
square prism 

(cube) 
12 40 0 0 

square bipyramid 
(octahedron) 

12 22246 0 275 
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Supplementary Table 2│List of the recombinant polypeptide amino acid sequences. 
Linkers SGPG between peptide segments are underlined. Sequences from vector are double 
underlined. 
 
Name / peptide 
sequence 

Amino acid sequence 

TET12    
  
APH-P3-BCR-
GCNsh-APH-P7-
GCNsh-P4-P5-P8-
BCR-P6 

MYHHHHHHSRAGMKQLEKELKQLEKELQAIEKQLAQLQWKAQARKKKLAQLKKKLQASG
PGSPEDEIQQLEEEIAQLEQKNAALKEKNQALKYGSGPGDIEQELERAKASIRRLEQEV
NQERSRMAYLQTLLAKSGPGQLEDKVEELLSKNYHLENEVARLKKLVGSGPGMKQLEKE
LKQLEKELQAIEKQLAQLQWKAQARKKKLAQLKKKLQASGPGSPEDEIQALEEKNAQLK
QEIAALEEKNQALKYGSGPGQLEDKVEELLSKNYHLENEVARLKKLVGSGPGSPEDKIA
QLKQKIQALKQENQQLEEENAALEYGSGPGSPEDENAALEEKIAQLKQKNAALKEEIQA
LEYGSGPGSPEDKIAQLKEENQQLEQKIQALKEENAALEYGSGPGDIEQELERAKASIR
RLEQEVNQERSRMAYLQTLLAKSGPGSPEDKNAALKEEIQALEEENQALEEKIAQLKYG 
SGTS 

TET11 
 
APH-P3-BCR-
GCNsh-APH-P7-
GCNsh-P4-P5-P8-
BCR 

MYHHHHHHSRAGMKQLEKELKQLEKELQAIEKQLAQLQWKAQARKKKLAQLKKKLQASG
PGSPEDEIQQLEEEIAQLEQKNAALKEKNQALKYGSGPGDIEQELERAKASIRRLEQEV
NQERSRMAYLQTLLAKSGPGQLEDKVEELLSKNYHLENEVARLKKLVGSGPGMKQLEKE
LKQLEKELQAIEKQLAQLQWKAQARKKKLAQLKKKLQASGPGSPEDEIQALEEKNAQLK
QEIAALEEKNQALKYGSGPGQLEDKVEELLSKNYHLENEVARLKKLVGSGPGSPEDKIA
QLKQKIQALKQENQQLEEENAALEYGSGPGSPEDENAALEEKIAQLKQKNAALKEEIQA
LEYGSGPGSPEDKIAQLKEENQQLEQKIQALKEENAALEYGSGPGDIEQELERAKASIR
RLEQEVNQERSRMAYLQTLLAKSGTS 

TET12Scr 
 
GCNsh-APH-APH-
P3-BCR- P7-GCNsh-
P4-P5-P8-BCR-P6 

MYHHHHHHSRAGQLEDKVEELLSKNYHLENEVARLKKLVGSGPGMKQLEKELKQLEKEL
QAIEKQLAQLQWKAQARKKKLAQLKKKLQASGPGMKQLEKELKQLEKELQAIEKQLAQL
QWKAQARKKKLAQLKKKLQASGPGSPEDEIQQLEEEIAQLEQKNAALKEKNQALKYGSG
PGDIEQELERAKASIRRLEQEVNQERSRMAYLQTLLAKSGPGSPEDEIQALEEKNAQLK
QEIAALEEKNQALKYGSGPGQLEDKVEELLSKNYHLENEVARLKKLVGSGPGSPEDKIA
QLKQKIQALKQENQQLEEENAALEYGSGPGSPEDENAALEEKIAQLKQKNAALKEEIQA
LEYGSGPGSPEDKIAQLKEENQQLEQKIQALKEENAALEYGSGPGDIEQELERAKASIR
RLEQEVNQERSRMAYLQTLLAKSGPGSPEDKNAALKEEIQALEEENQALEEKIAQLKYG 
SGTS 

TET12SplitYFP 
 
CYFP- APH-P3-
BCR-GCNsh-APH-
P7-GCNsh-P4-P5-P8-
BCR-P6-NYFP 

MYHHHHHHSRAGDKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYL
SYQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYKSGSGMKQLEKELKQLEKELQAI
EKQLAQLQWKAQARKKKLAQLKKKLQASGPGSPEDEIQQLEEEIAQLEQKNAALKEKNQ
ALKYGSGPGDIEQELERAKASIRRLEQEVNQERSRMAYLQTLLAKSGPGQLEDKVEELL
SKNYHLENEVARLKKLVGSGPGMKQLEKELKQLEKELQAIEKQLAQLQWKAQARKKKLA
QLKKKLQASGPGSPEDEIQALEEKNAQLKQEIAALEEKNQALKYGSGPGQLEDKVEELL
SKNYHLENEVARLKKLVGSGPGSPEDKIAQLKQKIQALKQENQQLEEENAALEYGSGPG
SPEDENAALEEKIAQLKQKNAALKEEIQALEYGSGPGSPEDKIAQLKEENQQLEQKIQA
LKEENAALEYGSGPGDIEQELERAKASIRRLEQEVNQERSRMAYLQTLLAKSGPGSPED
KNAALKEEIQALEEENQALEEKIAQLKYGSGSGVSKGEELFTGVVPILVELDGDVNGHK
FSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFGYGLQCFARYPDHMKQHDFFK
SAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYN
YNSHNVYIMASGTS 

TET11SplitYFP 
CYFP- APH-P3-
BCR-GCNsh-APH-
P7-GCNsh-P4-P5-P8-
BCR -NYFP 

MYHHHHHHSRAGDKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYL
SYQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYKSGSGMKQLEKELKQLEKELQAI
EKQLAQLQWKAQARKKKLAQLKKKLQASGPGSPEDEIQQLEEEIAQLEQKNAALKEKNQ
ALKYGSGPGDIEQELERAKASIRRLEQEVNQERSRMAYLQTLLAKSGPGQLEDKVEELL
SKNYHLENEVARLKKLVGSGPGMKQLEKELKQLEKELQAIEKQLAQLQWKAQARKKKLA
QLKKKLQASGPGSPEDEIQALEEKNAQLKQEIAALEEKNQALKYGSGPGQLEDKVEELL
SKNYHLENEVARLKKLVGSGPGSPEDKIAQLKQKIQALKQENQQLEEENAALEYGSGPG
SPEDENAALEEKIAQLKQKNAALKEEIQALEYGSGPGSPEDKIAQLKEENQQLEQKIQA
LKEENAALEYGSGPGDIEQELERAKASIRRLEQEVNQERSRMAYLQTLLAKSGSGVSKG
EELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTT
FGYGLQCFARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNR
IELKGIDFKEDGNILGHKLEYNYNSHNVYIMASGTS 
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Supplementary Figures 4-11 
 
 
 
 

 
 

 
 
 
Supplementary Figure 4│Helical wheel diagram for parallel and antiparallel coiled-coil 
dimers. The sequence of seven amino acid residues (heptad repeat) is denoted by positions 
abcdefg. Positions a and d are typically occupied by hydrophobic residues forming a 
hydrophobic core. Positions e and g are frequently occupied by charged residues that by the 
formation of interhelical electrostatic interactions direct the parallel or antiparallel helix 
orientation. Stabilizing interactions between residues of the two helices are denoted by 
arrows. 
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Supplementary Figure 5│ Molecular model of the folded tetrahedron TET12. The model 
was prepared by using the MODELLER33 program as described in the online methods 
section. Scale bar below the model indicates 5 nm. 
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Supplementary Figure 6│Analysis of the orthogonality of the designed coiled-coil pair 
combinations used for the construction of the tetrahedron. CD spectra of synthetic 
peptides (a), orthogonal peptide pairs (b) or non-orthogonal peptide pairs (c) at concentration 
of 25 µM in 20 mM Tris, pH 8.0, were recorded at 20οC. Spectra are the average of three 
scans.  
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Supplementary Figure 7│Purification of polypeptides TET12, TET12splitYFP, variants 
with deleted (TET11) and scrambled (TET12scr) segment order. (a) Polypeptide TET12 
(Mw = 53,391 Da) was expressed in the form of inclusion bodies (1), which were purified by 
chelating chromatography (2) and RP-HPLC (3). (b) SDS-PAGE of the purified polypeptides 
TET12 (1), TET11 (Mw = 49,381 Da) (2), TET12scr (Mw = 53,391 Da) (3), TET12splitYFP  
(Mw = 80,810 Da) (4) and TET11splitYFP (Mw = 76,800 Da) (5). SDS-PAGE was performed 
on a 12 % separation gel under non-reducing conditions and proteins were stained with a 
solution of Coomassie brilliant blue R (Sigma).  
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Supplementary Figure 8│Formation of aggregates produced by dialysis at high, 10 µM 
TET12 polypeptide concentration. The hydrodynamic diameters above 80 nm were 
determined by DLS in three independent experiments with the calculated mean value ± s.d.  
of 100.2 ± 20.4 nm. Representative histogram of one experiment is shown.  
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Supplementary Figure 9│ Tetrahedral particles visualized by TEM. Samples of self-
assembled polypeptide tetrahedra were either stained with uranyl (a,b) or uranyl staining was 
used after 1.8-nm nanogold beads were bound to one vertex of the tetrahedron via (His)6 
peptide tag (c-f). Self-assembling procedures were performed by slow refolding of denatured 
polypeptide TET12. The samples were positively stained using either a short time (a) or a 
long time (b) staining procedure. Tetrahedral structures were obtained by slow refolding of 
chemically denatured polypeptide (c,d) or by slow annealing of temperature denatured 
polypeptide TET12 (e). Polypeptide structures were labeled by nanogold and subsequently 
stained with uranyl, for a short time (c,e) or a long time (d). (f) TET12splitYFP formed 
tetrahedral structures. Scale bars, 5 nm. 
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Supplementary Figure 10│Self-assembly of TET12 at high concentration forms a 
network rather than discrete structures. TET12 was dialyzed at high concentration (10 
µM) from 6 M GdnHCl against 20 mM Tris buffer, pH 8.5 and 150 mM NaCl. Sample was 
imaged by TEM using uranyl staining. Self-assembly at high concentration reveals the 
formation of network due to intermolecular interactions with the complementary segments 
from the other molecules. Scale bar, 20 nm. 
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Supplementary Figure 11│Decreased stability of structures formed by TET12 variants 
with incomplete (TET11) or scrambled (TET12scr) coiled-coil-building segments in 
comparison to TET12 nanostructures. Stability of the assembled material at low, 100 nM 
polypeptide concentration followed by concentration of samples to 4 µM was determined 
from the dependence of the molar ellipticity at 222 nm in addition of GdnHCl from 0 to 6 M. 
Values are expressed as means of triplicate measurements. Error bars indicate the s.d. of the 
measurements. 
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