Closer Insight into the Reactivity of TMP-dialkyl Zincates in Directed ortho-Zincation of Anisole: Experimental Evidence of Amido Basicity and Structural Elucidation of Key Reaction Intermediates

William Clegg,^b Ben Conway,^a Eva Hevia,^{*a} Matthew D. McCall,^a Luca Russo^b and Robert E. Mulvey^a

^aWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK, G1 1XL. E-mail: <u>eva.hevia@strath.ac.uk</u>, ^bSchool of Chemistry, University of Newcastle, Newcastle upon Tyne NE1 7RU, U.K.

Molecular structure of compound 6

Figure 1. Molecular structure of **o** with 50% probability asplacement ellipsoids. Hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and bond angles (deg): Zn–C1 2.048(3), Zn–C2 2.016(3), Zn–C3 2.045(2), Li–C1 2.290(4), Li– N1 2.144(4), Li–N2 2.108(4), Li–O 1.960(4); C1–Zn–C2 121.09(10), C1–Zn–C3 122.71(10), C2–Zn–C3 116.20(11), C1–Li–N1 113.90(18), C1–Li–N2 114.34(18), C1–Li–O 107.24(17), N1–Li–N2 86.96(14), N1–Li–O 115.07(19), N2–Li–O 118.55(19).

Zincate 6 constitutes the first example of a putative intermediate formed in the first step of a two-step AMMZ reaction of an aromatic molecule to be structurally defined and fully characterised. Its molecular structure can be considered a contacted ion pair and can be viewed as a six-membered [LiOCCZnC] ring system where both metals are connected through a shared methyl and an ortho-deprotonated anisole ligand set. The latter anion coordinates to the mixed-metal $\{Li(Me)Zn(Me)\}$ fragment in an ambidentate fashion, through the carbon-zinc strong, short covalent bond [2.045(2) Å] and the oxygen-lithium dative bond [1.960(4) Å]. This two-fold coordination mode is analogous to that found in the compound $[(THF)Li(C_6H_4-OMe)(TMP)Zn(^tBu)]$ (2) [Zn-C_{anisole} bond distance: 2.0937(16) Å; Li-O_{anisole} bond distance: 1.985(3) Å],⁶ the product of the direct zincation of anisole by base 1. The bridging methyl group is strongly bound to zinc as evidenced by the short distance [2.048(3) Å] and surprisingly it also forms a medium-short Li-C bond [2.290(4) Å]. This bond is remarkably shorter (by 0.313 Å) than that found in the related dimethyl-TMP zincate $[(TMEDA)Li(TMP)(Me)Zn(Me)]^1$ [2.603(5) Å] where the methyl group forms a secondary agostic interaction with the lithium center and it is more comparable with those found in $[{LiMe(THF)}_4]^2$ [mean Li-C distance 2.240 Å]. However, it should be noted that in solution at ambient temperature this Li-C bond must cleave since both methyl groups appear equivalent in the ¹H and ¹³C NMR spectra. Trigonal planar zinc completes its coordination by bonding to a terminal methyl group, at a distance [2.016(3) Å] slightly shorter than the Zn-C bridging bond length. The lithium coordination is distorted tetrahedral [average angle around Li: 109.34°] with its terminal sites filled by the chelating diamine TMEDA. A similar structure to the one exhibited by 6 could be expected for the THF-solvated mixed-metal compound 4 where the TMEDA ligand is replaced by two THF molecules.³ It is noteworthy that 6is stable in hexane solution and does not undergo disproportionation. This could be due to the bidentate stabilisation provided by the TMEDA ligand which makes compound 6 more robust and therefore less prone to cleavage and rearrangement.

¹ Graham, D. V.; Hevia, E.; Kennedy, A. R.; Mulvey, R. E. Organometallics, 2006, 25, 3297.

² Ogle, C. A.; Huckabee, B. K.; Johnson IV, H. C.; Sims, P.F.; Winslow, S. D.; Pinkerton, A. A. Organometallics, 1993, 12, 1960.

³ This is supported by the fact that both compounds displayed very similar 1H, 13C and 7Li NMR spectra.

<u>NMR spectra</u>

Compound [(THF)Li(C₆H₄-OMe)(TMP)Zn(^tBu)](2)

¹H NMR spectrum in C₆D₆

Compound [Li₄(C₆H₄-OMe)₄(THF)₂] (3)

S6

Compound [(THF)₂Li₂Zn(C₆H₄-OMe)₄](5)

Compound [(TMEDA)Li(C₆H₄-OMe)(Me)Zn(Me)](6)

$^1\text{H},\,^7\text{Li}$ and ^{13}C NMR spectra in C_6D_6

Compound [(PMDETA)Li(C₆H₄-OMe)(^tBu)Zn(^tBu)](8)

$^1\text{H},\,^7\text{Li}$ and ^{13}C NMR spectra in C_6D_6

Compound [(THF)Li(TMP)(Me)Zn(Me)](9)

٦٣ 6 -7 ppm<u>9</u> 8 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 7

Reactions monitored by NMR

a) [(THF)₃Li(C₆H₄-OMe)(^tBu)Zn(^tBu)](7) + TMP(H) in deuterated benzene

(i) ¹H NMR spectrum of 7 in C_6D_6 :

b) [(THF)₃Li(C₆H₄-OMe)(^tBu)Zn(^tBu)](7) + TMPH (2 hrs) in d⁸-THF

(ii) ¹H NMR spectrum of 7 + TMP(H) in d⁸-THF (2 hrs)

c) [(THF)Li(TMP)(tBu)Zn(tBu)](1) + anisole in d⁸-THF

(ii) ¹H NMR spectrum of $1 + anisole (1 hr) in d^8$ -THF

d) ¹H NMR spectra in d⁸-THF of :

(i) Compound 7

1.0 8.0 7.5 7.0 4.0 1.5 6.5 6.0 5.5 5.0 4.5 3.5 3.0 2.5 2.0 0.5 ppm

(iv) Compound 1+anisole

