SUPPLEMENTARY DATA

APPENDIX S1. Taxa used in this study and voucher information.

Abbreviations (except herbarium codes): ASDM = Arizona-Sonora Desert Museum, Tucson, Arizona, USA; cult. = cultivated; DBG = Desert Botanical Garden, Phoenix, Arizona, USA; DELEP = Desert Legume Program of the University of Arizona, Tucson, Arizona, USA; s.n. = sine numerus (Latin, no collection number); UA = University of Arizona, Tucson, Arizona, USA; UMBG = Botanical Garden of the University of Munich, Munich, Germany. For herbarium codes see Index Herbariorum (Thiers, continuously updated). For details about clades see Marazzi et al. (2006). For GenBank accessions and voucher information about the taxa in the molecular phylogenetic tree see Marazzi and Sanderson (2010), their Appendix S1 in the supplementary material.

Taxon name and authority	Clade	Voucher specimen, locality	Deposited at
Senna alata(L.) Roxb.	II	Marazzi & al. BM242, Bolivia, Tarija	CTES, Z
S. aphylla (Cav.) H.S. Irwin & Barneby	VIa	XDL 91-0486D, cult. at DELEP	ARIZ, DELEP
S. artemisiodes(DC.) Randell	IVa	<i>XDL 96-0039</i> , cult. at DELEP	ARIZ, DELEP
S. aversiflora(Herbert) H.S. Irwin & Barneby	VI	Queiroz & Marazzi LQ9204, Brazil, Bahia	HUEFS, Z
S. bracteosa* D. Cardoso & L.P. Queiroz (Fig. 2I)	V	Cardoso &Bastos2052, Brazil, Bahia	HUEFS
S. bracteosa* D. Cardoso & L.P. Queiroz(Fig. 2J)	V	Cardoso & Santana 1306, Brazil, Bahia [type location, see Cardoso and Queiroz (2008)]	BRIT, CEPEC, HUEFS, K, MBM, MO, NY, RB, SP, SPF
S. cana var. calva H.S. Irwin & Barneby	V	Conceiçao & Marazzi AC1132, Brazil, Bahia	HUEFS, Z
S. costata (J.F. Bailey & C. White) Randell	IVa	XDL 91-0400D, cult. at DELEP	ARIZ, DELEP
S. covesiiA. Gray	VII	Marazzi BM353, cult. at UA	ARIZ
S. didymobotrya (Fresen.) H.S. Irwin & Barneby	II	Marazzi & Arrigo BM331, cult.parking lot, USA, Arizona	ARIZ
S. hirsuta var. glaberrima (M.E. Jones) H.S. Irwin & Barneby	VII	Marazzi BM327, USA,Arizona	ARIZ, DELEP
S. italica* Mill.	II	Weavings.n., Africa	_
S. martiana (Benth.) H.S. Irwin & Barneby	II	Queiroz s.n., cult. at HUEFS	HUEFS, ARIZ
S. occidentalis (L.) Link	VIIa	Marazzi & Solís Neffa BM231, Argentina, Corrientes	CTES, Z
S. pallida (Vahl) H.S. Irwin &Barneby	VI	XDL 90-0351, cult. at DELEP	ARIZ, DELEP
S. paradictyon(Vogel) H.S. Irwin &Barneby	II	<i>Marazzi et al. BM028</i> , Paraguay, Alto Paraná	CTES, PY, Z
S. pendula (Willd.) H.S. Irwin &Barneby	VIIa	Marazzi et al.BM222, Argentina, Corrientes	CTES, Z

<i>S. pilifera</i> (Vogel) H.S. Irwin & Barneby	IVb	Marazzi et al. BM256, Bolivia, Santa Cruz	CTES, Z.
Taxon name and authority (cont.)	Clade	Voucher specimen, locality	Deposited at
S. pleurocarpavar. pleurocarpa (F. Muell.) Randell	II	XDL 96-0088, cult. at DELEP	ARIZ, DELEP
S. purpusii (Brandegee) H.S. Irwin &Barneby	VIIa	Marazzi BM302, cult. at DBG	ARIZ, DBG
S. robiniifolia(Benth.) H.S. Irwin &Barneby	VI	<i>Marazzi BM005</i> , cult. atUMBGwith nr. 98/3500w	Z
S. tonduzii (Standl.) H.S. Irwin &Barneby	VI	Marazzi & FloresBM187, Mexico, Chiapas	MEXU, Z

^{*} Specimen with no collected material available in this study, used for illustration purpose only.

LITERATURE CITED

- **Cardoso DBOS, Queiroz LPQ. 2008.** A New Species of *Senna* (Leguminosae, Caesalpinioideae) from Eastern Brazil. *Novon* **18**: 140–143.
- Marazzi B, Endress PK, Paganucci de Queiroz L, Conti E. 2006a. Phylogenetic relationships within *Senna* (Leguminosae, Cassiinae) based on three chloroplast regions: patterns in the evolution of floral symmetry and extrafloral nectaries. *American Journal of Botany* 93: 288–303.
- **Marazzi B, Sanderson MJ. 2010.** Large-scale patterns of diversification in the widespread legume genus *Senna* and the evolutionary role of extrafloral nectaries. *Evolution* **64**: 3570–3592.
- **Thiers B.** [continuously updated]. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. http://sweetgum.nybg.org/ih/

Characters coded for 88 taxa (*Senna* spp. and outgroups). Proportion of missing data calculated by Mesquite: 0.06439394. Taxon names as in the trees in Appendix S3 consist of abbreviated genus and species (and variety) names, plus collection number in *Senna* species (see Appendix S1 above, and also Marazzi and Sanderson, 2010). Following multistate characters were coded (question marks indicate missing information):

- (A) <u>EFN location on plant:</u> 0 = EFNs absent, 1 = leaves, 2 = stipules, 3 = bracts,4 = sepals, 5 = bract scar, 6 = base of pedicels.
- (B) <u>Location of EFNs on leaves:</u> 0 = no EFNs on leaves, 1 = EFNs at the base of the petiole (near or on the pulvinus), 2 = along the petiole (well above the base and below the first pair of leaflets), 3 = between the first (i.e., the most proximal) pair of leaflets only, 4 = between the first pair of leaflets and also the subsequent, 5 = between all pairs of leaflets.
- (C) <u>EFN morphology:</u> 0 = EFNs absent, 1 = individualized EFNs, 2 = non-individualized EFNs, 3 = trichomes.

Taxon	A	В	\mathbf{C}
Cae decape	0	0	0
Cas fistul	0	0	0
Ch desvaux	1	2	1
Delo regia	0	0	0
Gle triaca	0	0	0
S galBM165	0	0	0
S polBM172	0	0	0
S siaBM157	0	0	0
S silBM068	0	0	0
S didBM002	2	0	2
S itaZIETS	2&3&4	0	?
S ma861394	?	0	?
S marP7916	2&3&4	0	?
S nicBM185	?	0	?
S no872886	?	0	?
S parBM028	3&4	0	2
S pl930575	2&3&4	0	? 2 2
S retBM154	?	0	?
S andBM162	0	0	0
S atoBM173	0	0	0
S speBM029	0	0	0
S uniBM167	0	0	0
S wisBM169	0	0	0
S skiBM176	1	3	1
S accJ1137	1	3	1
S acipD432	1	4	1
S co842721	1	3	1
S gl952287	1	3	1
S nn952265	1	4	1
S nnnBM296	1	4	1
S chlBM128	1	3	1
S darBM153	1	3	1
S garP7866	1	3	1
	1	3	1
S hayBM150	1	3	1
S herM5084		3	
S macBM082	1		1
S mucBM019	1	3	1
S nnnBM160	1	3	1
S obtBM024	1	4	1
S pilBM011	1	5	1
S pinP9210	1	5	1
S quiP9220	1	5	1
S rizC1126	1	3	1
S rugG2337	1	5	1

Taxon (cont.)	A	В	C
S splA1566	1	3	1
S c cC1132	1&6	4	1
S nnnM4988	1&6	4	1
S phlMS209	1&6	5	1
S uniBM186	1&6	4	1
S velF2453	1&6	4	1
S a aP9198	1	4	1
S a cP9177	1	4	1
S aphBM084	?	0	?
S chaBM083	?	0	?
S craBM120	?	0	?
S holBM161	1	3	1
S kurBM233	1	3	1
S mul liLP	1	3	1
S mul muBM	1	3	1
	1&6	4	1
S palBM178	?	0	?
S rigBM108 S robBM005	1&6	4	1
		5	1
S tonBM187	1&6	5	1
S wilBM158	1 1	3	1
S arnBM234 S barBM136	1	1	1
S bicBM159	1	3	1
S birBM090	1	3	1
S cerBM007	1	1	1
S corBM103	1	3	1
S hilBM027	1	3	1
S hir h115	1	1	1
S hir leBM	1	1	1
S mexBM006	1	3	1
S nnnCG491	1	<i>3</i>	1
S occBM060	1	1	1
	1	4	1
S penBM117	1	3	1
S purBM004	1	1	1
S scaBM229	1	4	1
S sepBM140	1	3	1
S subPB427 S apiBM170	1	3	1
•	1	3	1
S argBM175 S armJS751	1	3	1
S baS12700	1	3	1
	1	5	1
S croBM163	1	3 4	1
S croBM163	1	4	1
S vilBM174	1	4	1

APPENDIX S3. Outputs of ancestral character states analyses in Mesquite.

Tracing history of characters A–C over the ML *Senna* tree and over 500 ML bootstrap trees (trees from Marazzi and Sanderson, 2010; only one of 500 ML bootstrap trees shown), and calculating tree values (tree length, CI, RI). See Appendices S1 and S2 (above) for complete specimen names and details on character states and coding, respectively.


```
==120 S mucBM019
                                                                             =121 S obtBM024
                                                                             =124 S macBM082
                                                                            ==125 S darBM153
                                                                          ===126 S garP7866
                        ,==116
                                                                           ==129 S rizC1126
                                                                             =130 S rugG2337
                                                                             =131 S splA1566
                                                                              134 S hayBM150
                 ,==115
===14
                                                                             =135 S herM5084
                                                                             137 S chlBM128
                                                                           ===140 S accJ1137
                                                                              141 S acipD432
                                                                              144 S co842721
                                                                             =148 S skiBM176
                                                                          ===152 S speBM029
                                                                             153 S atoBM173
                                                                              155 S uniBM167
                                                                              =18 S didBM002
                                                                              =19 S itaZIETS
                                                                              =21 S retBM154
                                                                              22 S marP7916
                                                                              23 S no872886
                                                                              =27 S p1930575
                                                                              =28 S nicBM185
                                                                             =159 S silBM068
                                                                      ======== 8 Delo regia
```

** Tree 1 out of 500 likelihood bootstrap trees from Marazzi and Sanderson (2010).

Tree with node numbers:

```
50 S birBM090
                                                                              S corBM103
                                                                           52 S subPB427
                                                                           =54 S cerBM007
                       ===33
                                                                        ====57 S occBM060
                                                                           =58 S scaBM229
                                                                           59 S barBM136
                                                                           60 S hir leBM
                                                                           61 S hir h115
                  ==32
                                                                           62 S arnBM234
                                                                           68 S croBM163
                                                                          ==69 S apiBM170
                                                                           70 S argBM175
                                                                           72 S vilBM174
                                                                            3 S covBM297
                                                                              S baS12700
                                                                           75 S armJS751
                                                                              S robBM005
                                                                           =83 S palBM178
                                                                           84 S holBM161
                                                                           85 S tonBM187
                                                                            90 S chaBM083
                                                                              S aphBM084
                                                                           92 S rigBM108
                                                                           93 S craBM120
                                                                           94 S kurBM233
                                                                           99 S mul muBM
                                                                           100 S mul liLP
                                                                          101 S a aP9198
                                                                          102 S a cP9177
                                                                          =103 S wilBM158
                                                                          =105 S uniBM186
                       ==104
                                                                          =108 S nnnM4988
                             ==106
                                                                          =111 S phlMS209
     ===30
                                                                          =116 S pilBM011
                                                                          =119 S macBM082
                                                                          =120 S darBM153
                                                                          =121 S garP7866
                                   ===115
                                                                          122 S pinP9210
                                                                          123 S quiP9220
                                                                         =124 S rizC1126
                                          ==117
                                                                         ==125 S rugG2337
                                                                          126 S splA1566
                                                                           129 S hayBM150
                                                                          130 S herM5084
                                                                          131 S nnnBM160
===14|
                                                                          =133 S mucBM019
                                                                 ========134 S obtBM024
                                                                     =====135 S chlBM128
```

,===34|

=47 S bicBM159

```
S acipD432
                                                                                                42 S nn952265
                                                                                               .43 S co842721
                                                                                               144 S g1952287
             ==13
                                                                                               149 S atoBM173
                                                                                                  S andBM162
                                                                                               152 S uniBM167
                                                                                                  S retBM154
                                                                                                25 S parBM028
                                                                                                  S ma861394
                                                                                             ==157 S siaBM157
                                                                                               159 S galBM165
                                                                                               160 S polBM172
===10|
                                                                                 ======= 9 Ch desvaux
```

(A) RECONSTRUCTIONS OF LOCATION OF EFNs ON PLANT ----- Trace Character History Character: EFN general location Parsimony reconstruction (Unordered) [Steps: 19] node 2: node 3: node 4: node 5: node 6: absent absent absent absent absent node 7: node 8: absent absent node 9: node 10: leaf absent node 11: node 12: node 13: absent absent absent node 14: node 15: absent stipule, bract, sepal node 13: node 16: node 17: node 18: stipule, bract, sepal node 18: node 20: node 20: node 21: node 23: node 24: node 26: node 27: node 28: node 29: node 30: node 31: node 31: node 33: stipule, bract, sepal stipule, bract, sepal bract, sepal stipule, bract, sepal stipule, bract, sepal stipule, bract, sepal absent, stipule, bract, sepal absent, stipule, bract, sepal leaf leaf leaf node 32: node 33: node 34: node 35: node 36: node 37: leaf leaf leaf leaf

```
node 38:
              leaf
node 39:
node 40:
              leaf
              leaf
node
node
              leaf
leaf
       41:
node 43:
               leaf
node
               leaf
node 45:
               leaf
node 46:
node 47:
               leaf
               leaf
              leaf
leaf
node 48:
node 49:
node 50:
              leaf
node 51:
               leaf
node 52:
              leaf
node 53:
               leaf
node 54:
              leaf
node 55:
node 56:
              leaf
leaf
node 57:
              leaf
node 58:
node 59:
               leaf
              leaf
node 60:
node 61:
              leaf
leaf
node 62:
              leaf
node 63:
               leaf
node 64:
              leaf
node 65:
node 66:
              leaf
               leaf
node 67:
              leaf
node 68:
              leaf
              leaf
leaf
node 69:
node
node
       71:
              leaf
node
node
       72:
73:
              leaf
               leaf
node 74:
node 75:
              leaf
leaf
node 76:
              leaf
node 77:
node 78:
               leaf
              leaf
node 79:
node 80:
              leaf
leaf
node 81:
              leaf
node 82:
node 83:
               leaf
               leaf
node 84:
               leaf
               leaf, pedicel base
node 85:
node 86:
node 87:
              leaf, pedicel base
leaf
              leaf, pedicel base
node 88:
node 89:
               leaf
node 90:
              leaf
node 91:
node 92:
              leaf
              leaf
node 93:
               leaf
node 94:
               leaf
node 95:
              leaf
node 96:
node 97:
               leaf
              leaf
node 98:
node 99:
               leaf
               leaf
node 100:
node 101:
               leaf
leaf
node 102:
                leaf
node 103:
node 104:
                leaf
node 105:
node 106:
                leaf
                leaf
                leaf,pedicel base
node 107:
                leaf
leaf
node 108:
node 109:
node 110:
node 111:
                leaf, pedicel base
leaf, pedicel base
node 112:
node 113:
                leaf, pedicel base leaf, pedicel base
node 114:
node 115:
                leaf
leaf
node 116:
node 117:
node 118:
                leaf
                leaf
leaf
node 119:
node 120:
                leaf
leaf
node 121:
                leaf
node 122:
node 123:
                leaf
node 124:
node 125:
                leaf
leaf
node 126:
                leaf
node 127:
node 128:
                leaf
node 129:
node 130:
                leaf
                leaf
                leaf
leaf
node 131:
node 132:
node 133:
                leaf
node
       134:
                leaf
node 135:
                leaf
node 136:
node 137:
                leaf
leaf
                leaf
leaf
node 138:
node
node 140:
                leaf
node 141:
node 142:
               leaf
```

```
node 143:
            leaf
node 144:
node 145:
            leaf
node 146:
            leaf
node
            leaf
node
     148:
            leaf
     149:
node
     150:
            absent
     151 •
node
            absent
node 152:
            absent
node 153:
            absent
node
node 155:
            absent
node 156:
            absent
node 157:
            absent
node 158 ·
            absent
     159:
node
            absent
node 160:
            absent
node
            absent
node 162:
            absent
     163.
node 164:
           absent
```

----- Trace Character Over Trees ------

EFN general location

Reconstructed Ancestral States (Parsimony Ancestral States) over 500 trees. Shown for each state at each node is the number of trees on which the reconstructed state set at the node includes that state (it may also include other states as equally or sufficiently optimal according to the reconstruction criteria).

```
node 2: Node in 500 trees. Optimal states and count of trees with each: absent: 500.0 node 3: Node in 457 trees. Optimal states and count of trees with each: absent: 457.0 node 5: Node in 143 trees. Optimal states and count of trees with each: absent: 143.0
node 5: Node in 145 trees. Optimal states and count of trees with each: absent: 145.0 node 7: Node in 65 trees. Optimal states and count of trees with each: absent: 65.0 node 10: Node in 457 trees. Optimal states and count of trees with each: absent: 457.0 node 11: Node in 496 trees. Optimal states and count of trees with each: absent: 496.0 node 13: Node in 353 trees. Optimal states and count of trees with each: absent: 332.23529412; leaf: 6.60695187; stipule:
4.71925134; bract: 4.71925134; sepal: 4.71925134
node 14: Node in 410 trees. Optimal states and count of trees with each: absent: 404.08653846; leaf: 5.91346154 node 15: Node in 487 trees. Optimal states and count of trees with each: absent: 36.857320099; leaf: 8.76116625; stipule:
147.12717122; bract: 147.12717122; sepal: 147.12717122 node 16: Node in 182 trees. Optimal states and count of trees with each: stipule: 60.66666667; bract: 60.66666667; sepal:
node 17: Node in 235 trees. Optimal states and count of trees with each: stipule: 78.33333333; bract: 78.33333333; sepal: 78.333333333
60.6666667
node 18: Node in 497 trees. Optimal states and count of trees with each: stipule: 165.66666667; bract: 165.66666667; sepal: 165.66666667
node 22: Node in 113 trees. Optimal states and count of trees with each: stipule: 37.66666667; bract: 37.66666667; sepal: 37.66666667
           Node in 495 trees.
                                    Optimal states and count of trees with each: absent: 114.66239527; leaf: 18.05322819; stipule:
node 29:
120.76145885; bract: 120.76145885; sepal: 120.76145885
           Node in 466 trees. Optimal states and count of trees with each: leaf: 466.0
node 30:
node 31:
            Node in 409 trees.
                                    Optimal states and count of trees with each: leaf: 409.0 Optimal states and count of trees with each: leaf: 500.0
            Node in 500 trees.
node 32:
node 33.
            Node in 363 trees
                                    Optimal states and count of trees with each: leaf: 363.0
            Node in 225 trees.
                                     Optimal states and count of trees with each: leaf:
node 36:
            Node in 294 trees.
                                    Optimal states and count of trees with each: leaf: 294.0
node 37:
            Node in 495 trees.
                                     Optimal states and count of trees with each: leaf: 495.0
                                    Optimal states and count of trees with each: leaf: 484.0
node 38:
            Node in 484 trees.
node 41:
            Node in 431 trees.
                                    Optimal states and count of trees with each: leaf:
                                                                                                    431 0
            Node in 480 trees.
node
     43:
                                    Optimal states and count of trees with each: leaf:
                                                                                                    480.0
node
     44:
            Node in 500 trees.
                                    Optimal states and count of trees with each: leaf: 500.0
                                              states and
            Node
                  in 403 trees.
                                     Optimal
                                                            count
                                                                   of trees with each:
node
                                                                                            leaf:
node 49:
            Node in 227 trees.
                                    Optimal states and count of trees with each: leaf:
                                                                                                    227.0
     53:
            Node in 487 trees.
                                     Optimal states and count of trees with each: leaf:
node 55:
            Node in 448 trees.
                                    Optimal states and count of trees with each: leaf:
                                                                                                    448.0
            Node in 479 trees.
node 56:
                                    Optimal states and count of trees with each: leaf:
                                                                                                    479.0
            Node in 500 trees.
     63:
                                     Optimal states and count of trees with each: leaf:
node
            Node in 71 trees. Optimal states and count of trees with each: leaf: 71.0 Node in 26 trees. Optimal states and count of trees with each: leaf: 26.0
node 64:
node 66:
            Node in 497 trees.
                                    Optimal states and count of trees with each: leaf: 497.0
            Node in 480 trees.
                                   Optimal states and count of trees with each: leaf: 480.0
node 67:
            Node in 6 trees. Optimal states and count of trees with each: leaf: 6.0
      71:
node
            Node in 499 trees. Optimal states and count of trees with each: leaf: 499.0 Node in 498 trees. Optimal states and count of trees with each: leaf: 498.0
node 76:
node 78:
            Node in 477 trees.
                                    Optimal states and count of trees with each: leaf: 477.0 Optimal states and count of trees with each: leaf: 423.0
            Node in 423 trees.
node 80:
            Node in 500 trees.
                                    Optimal states and count of trees with each: leaf: 500.0
node 81:
            Node in 499 trees.
                                    Optimal states and count of trees with each: leaf:
                                                                                                    499 N
            Node in 339 trees.
                                    Optimal states and count of trees with each: leaf:
node 86:
node 87:
            Node in 499 trees.
                                    Optimal states and count of trees with each: leaf: 499.0
                                     Optimal
                                              states and count of trees with each: leaf:
node
            Node in 262 trees.
node 89:
            Node in 349 trees.
                                    Optimal states and count of trees with each: leaf: 349.0
            Node in 132 trees.
                                     Optimal states and count of trees with each: leaf: 132.0
node 95:
            Node in 496 trees.
                                    Optimal states and count of trees with each: leaf: 496.0
node 96:
                                    Optimal states and count of trees with each: leaf: 498.0
node 97 ·
            Node in 498 trees.
            Node in 497 trees.
                                    Optimal states and count of trees with each: leaf:
node
node 104:
             Node in 498 trees.
                                     Optimal states and count of trees with each: leaf: 498.0
             Node in 500 trees.
                                     Optimal states and count of trees with each: leaf: 500.0
node 107:
             Node in 327 trees.
                                     Optimal states and count of trees with each: leaf: 327.0
             Node in 496 trees.
                                      Optimal states and count of trees with each: leaf:
node 113:
             Node in 496 trees.
                                     Optimal states and count of trees with each: leaf:
                                                                                                     496.0
             Node in 332 trees.
     114:
                                     Optimal states and count of trees with each: leaf: 332.0
node
             Node in 86 trees. Optimal states and count of trees with each: leaf: 86.0 Node in 500 trees. Optimal states and count of trees with each: leaf: 500
node
node
     117:
                                                                                                     500.0
             Node
                   in 484 trees.
                                     Optimal states and count of trees with each: leaf:
node 127:
             Node in 415 trees.
                                     Optimal states and count of trees with each: leaf:
                                                                                                     415.0
node 128:
             Node in 326 trees.
                                     Optimal states and count of trees with each: leaf: 326.0
             Node in 496 trees.
                                     Optimal states and count of trees with each: leaf: 496.0
node 132:
                                     Optimal states and count of trees with each: leaf: 395.0
node 136.
             Node in 395 trees
                       43 trees.
                                     Optimal states and count of trees with each: leaf:
node 140:
             Node in 63 trees. Optimal states and count of trees with each: leaf: 63.0
             Node in 387 trees. Optimal states and count of trees with each: absent: 387.0 Node in 408 trees. Optimal states and count of trees with each: absent: 408.0
node 146.
node 147:
```

```
node 151: Node in 500 trees. Optimal states and count of trees with each: absent: 500.0
              Node in 484 trees. Optimal states and count of trees with each: absent: 484.0 Node in 205 trees. Optimal states and count of trees with each: absent: 205.0 Node in 498 trees. Optimal states and count of trees with each: absent: 498.0
node 154:
node 155:
node 158:
      ----- Values for Current Tree -----
For character 1, Parsimony steps: 19 (unordered) For character 1, C.I.: 0.94736842 For character 1, R.I.: 0.93333333
(B) RECONSTRUCTIONS OF LOCATION OF EFNs ON PLANT
----- Trace Character History -----
Character: Location of leaf EFNs
Parsimony reconstruction (Unordered) [Steps: 24]
node 2: absent
node 3: absent
node 4: absent
node 5:
            absent
node 6:
            absent
node 7:
            absent
node 8:
            absent
           along petiole
node 9:
node 10:
            absent
node 11:
             absent
node 12:
             absent.
node 14:
             absent
node 15:
node 16:
             absent
             absent
node 17:
             absent.
node 18:
node 19:
             absent
node 20:
node 21:
             absent
             absent
node 22:
             absent
node 23:
             absent
node 24:
             absent
node 25:
node 26:
             absent
             absent
node 27:
             absent
node 28:
             absent
node 29:
             absent
node 30:
             1. pair
node 31:
             1. pair
node 32:
             1. pair
             1. pair
1. pair
node 33:
node 34:
node 35:
             1. pair
             1. pair
1. pair
node 36:
node 37:
node 38:
             1. pair
node 39:
             1. pair
1.+2.pairs
node 40:
node 41:
             1. pair
node 42:
             1. pair
node 43:
             1. pair
1.+2.pairs
node
             1.+2.pairs
node 45:
      46:
47:
node
             1.+2.pairs
node
             1. pair
node 48:
             1. pair
node 49:
             1. pair
             1. pair
1. pair
node 50:
             1. pair
petiole base
petiole base
node 52:
node 53:
node 54:
node 55:
node 56:
             petiole base
petiole base
node 57:
node 58:
             petiole base
petiole base
node 59:
             petiole base
node 60:
node 61:
             petiole base
petiole base
node 62:
             petiole base
node 63:
             petiole base
             1. pair
1. pair
node 64:
node 65:
node 66:
             1. pair
             1. pair
1. pair
1.+2.pairs
node 67:
node 68:
node 69:
node
             1. pair
node 71:
             1. pair
node
      72:
      73:
node
             1. pair
node
      74:
                 pair
             all pairs
node
             1. pair
1.+2.pairs
node
      76:
             1. pair,1.+2.pairs
1. pair,1.+2.pairs
1. pair,1.+2.pairs
node 78:
node 79:
node 80:
node 81 ·
             1. pair, 1.+2.pairs
node 82:
             1. pair, 1.+2.pairs
            1. pair,1.+2.pairs
1.+2.pairs
1.+2.pairs
node 83:
node 84:
node 85:
```

```
node 86: 1.+2.pairs
node 87:
          1. pair all pairs
node 88:
node 89:
           absent, 1. pair, 1.+2.pairs
node 90:
           absent
node 91:
           absent.
     92:
node 93:
           absent
node 94:
           absent
node 95:
           absent
node 96.
           absent
           1. pair
node
node 98:
           1. pair, 1.+2.pairs
1. pair, 1.+2.pairs
node 99:
node 100:
            1. pair
node 101 ·
            1. pair
node 102:
            1. pair
            1.+2.pairs
1.+2.pairs
node 103:
node 104:
node 105:
            all pairs
node 106:
node 107:
            1.+2.pairs
1.+2.pairs
node 108:
            1.+2.pairs
node 109:
            1.+2.pairs
node 110:
            1.+2.pairs
node 112:
            1.+2.pairs
node 113:
            all pairs
node 114:
            1. pair
node 115:
            1. pair
node 116:
            1. pair
node 117:
               pair
            all pairs
node 119:
            1. pair
            1. pair
1.+2.pairs
node
     120.
node 121:
node 122:
            1. pair
node 123:
            1. pair
node 124:
            1. pair
node 125:
node 126:
            1. pair
node 127:
            all pairs
node 128:
            1. pair
all pairs
1. pair
node 129:
node
node 131:
node 132:
            1. pair
node 133:
            1. pair
node 134:
            1. pair
node
            1. pair
node 136:
            1. pair
            1. pair
node 138:
            1. pair
node 139:
            1. pair
node 140:
            1. pair
node 141 ·
            1.+2.pairs
node 142:
            1. pair, 1. +2. pairs
node 143:
            1. pair, 1.+2. pairs
node 144:
            1. pair
1.+2.pairs
node 145:
node 146:
            1.+2.pairs
node 147:
            1. pair
node 148:
            1. pair absent
node
node 150:
            absent
node
     151:
node 152:
            absent
node 153:
            absent
node 154:
            absent
node 155:
            absent
node 157:
            absent
node 158:
            absent
node 159:
            absent
node 160:
            absent
node 162:
            absent
node 163:
node 164: absent
```

----- Trace Character Over Trees -----

```
Location of leaf EFNs
```

Reconstructed Ancestral States (Parsimony Ancestral States) over 500 trees. Shown for each state at each node is the number of trees on which the reconstructed state set at the node includes that state (it may also include other states as equally or sufficiently optimal according to the reconstruction criteria).

```
Node in 500 trees. Optimal states and count of trees with each: absent: 500.0 Node in 457 trees. Optimal states and count of trees with each: absent: 457.0 Node in 143 trees. Optimal states and count of trees with each: absent: 143.0 Node in 65 trees. Optimal states and count of trees with each: absent: 65.0 Node in 457 trees. Optimal states and count of trees with each: absent: 457.0 Node in 496 trees. Optimal states and count of trees with each: absent: 496.0 Node in 353 trees. Optimal states and count of trees with each: absent: 353.0
node 2:
node 5:
node 7:
node 10:
node 11:
         13:
                                                                  Optimal states and count of trees with each: absent: 404.08653846; 1. pair: 5.91346154
node 14:
                     Node in 410 trees.
                                                                  Optimal states and count of trees with each: absent: 487.0 Optimal states and count of trees with each: absent: 182.0
node 15:
                     Node in 487 trees.
                     Node in 182 trees.
node 16:
                     Node in 235 trees.
Node in 497 trees.
                                                                  Optimal states and count of trees with each: absent: 235.0 Optimal states and count of trees with each: absent: 497.0
node 17 ·
                    Node in 113 trees. Optimal states and count of trees with each: absent: 113.0 Node in 495 trees. Optimal states and count of trees with each: absent: 495.0
node 22:
node 29:
```

```
node 30:
            Node in 466 trees. Optimal states and count of trees with each: absent: 14.82306163; 1. pair: 431.72166998; 1.+2.pairs:
19.45526839
            Node in 409 trees. Optimal states and count of trees with each: absent: 22.77087794; 1. pair: 358.20342612; 1.+2.pairs:
node 31:
28.02569593
            Node in 500 trees.
                                       Optimal states and count of trees with each: 1. pair: 488.28125; 1.+2.pairs: 11.71875
node 32:
            Node in 363 trees.
Node in 225 trees.
                                      Optimal states and count of trees with each: 1. pair: 363.0 Optimal states and count of trees with each: 1. pair: 225.0
node 33:
node 36:
            Node in 294 trees.
                                       Optimal states and count of trees with each: 1. pair: 294.0
            Node in 495 trees.
                                       Optimal states and count of trees with each: 1.
node 37 ·
                                                                                                       pair: 495.0
                                       Optimal states and count of trees with each: 1. pair: 484.0
node 38:
            Node in 484 trees.
                                                                                                       pair: 431.0
                                       Optimal states and count of trees with each: 1. pair: 431.0 Optimal states and count of trees with each: 1. pair: 480.0
node 41.
            Node in 431 trees.
            Node in 480 trees.
node 44:
            Node in 500 trees.
                                       Optimal states and count of trees with each: 1.+2.pairs: 500.0
            Node in 403 trees.
                                       Optimal states and count of trees with each: 1. pair: 403.0
node 48.
                                       Optimal states and count of trees with each: 1. pair: 227.0
node 49:
            Node in 227 trees.
node 53.
            Node in 487 trees
                                       Optimal states and count of trees with each: petiole base: 487.0
node 55:
            Node in 448 trees.
                                       Optimal states and count of trees with each: petiole base: 448.0
            Node in 479 trees.
                                      Optimal states and count of trees with each: petiole base: 479.0 Optimal states and count of trees with each: 1. pair: 488.28125;
node 56:
            Node in 500 trees.
node 63:
                                                                                                               488.28125; 1.+2.pairs: 11.71875
            Node in 71 trees. Optimal states and count of trees with each: 1. pair: 71.0 Node in 26 trees. Optimal states and count of trees with each: 1. pair: 26.0 Node in 497 trees. Optimal states and count of trees with each: 1. pair: 497.0
node 64:
node 65:
node 66:
            Node in 480 trees. Optimal states and count of trees with each: 1. pair: 480.0

Node in 6 trees. Optimal states and count of trees with each: 1. pair: 2.0; 1.+2.pairs: 2.0; all pairs: 2.0

Node in 499 trees. Optimal states and count of trees with each: absent: 0.50404040; 1. pair: 248.49191919; 1.+2.pairs:
node 67:
node 71:
node 76:
250.00404040
            Node in 498 trees. Optimal states and count of trees with each: absent: 0.50404858; 1. pair: 247.99190283; 1.+2.pairs:
node 77:
249.50404858
            Node in 477 trees. Optimal states and count of trees with each: absent: 22.03012048; 1. pair: 227.48493976; 1.+2.pairs:
node 78:
227.48493976
node 79: Node in 423 trees. Optimal states and count of trees with each: 1. pair: 210.5; 1.+2.pairs: 210.5; all pairs: 2.0
node 80:
            Node in 500 trees. Optimal states and count of trees with each: 1. pair: 249.24924925; 1.+2.pairs: 248.74874875; all
         2.00200200
            Node in 499 trees. Optimal states and count of trees with each: 1.+2.pairs: 499.0
node 81:
node 86:
            Node in 339 trees. Optimal states and count of trees with each: absent: 113.0; 1. pair: 113.33531157; 1.+2.pairs:
112.66468843
                                      Optimal states and count of trees with each: absent: 499.0 Optimal states and count of trees with each: absent: 262.0 Optimal states and count of trees with each: absent: 349.0 Optimal states and count of trees with each: 1. pair: 44.0; 1.+2.pairs: 44.33846154; all pairs:
node 87: Node in 499 trees.
node 88: Node in 262 trees.
            Node in 262 trees.
Node in 349 trees.
node 89:
            Node in 132 trees.
43.66153846
            Node in 496 trees. Optimal states and count of trees with each: 1. pair: 247.24313327; 1.+2.pairs: 248.75686673

Node in 498 trees. Optimal states and count of trees with each: 1. pair: 248.24316109; 1.+2.pairs: 249.75683891

Node in 497 trees. Optimal states and count of trees with each: 1. pair: 497.0
node 96: Node in 496 trees.
node 97: Node in 498 trees.
node 98:
              Node in 498 trees. Optimal states and count of trees with each: 1.+2.pairs: 498.0 Node in 500 trees. Optimal states and count of trees with each: 1.+2.pairs: 500.0
node 104:
node 106:
node 107:
              Node in 327 trees.
                                        Optimal states and count of trees with each: 1.+2.pairs: 327.0
                                        Optimal states and count of trees with each: 1. pair: 490.07171315; 1.+2.pairs: 5.92828685 Optimal states and count of trees with each: 1. pair: 490.07171315; 1.+2.pairs: 5.92828685
              Node in 496 trees.
node 112:
node 113:
              Node in 496 trees.
                                                                                                                332.0
node
              Node in 332 trees.
                                         Optimal states and count of trees with each: 1. pair:
              Node in 86 trees. Optimal states and count of trees with each: 1. Node in 500 trees. Optimal states and count of trees with each: 1.
node 115:
                                                                                                       pair: 86.0
                                         Optimal states and count of trees with
                                                                                            each: 1. pair: 500.0
node 118:
              Node in 484 trees. Optimal states and count of trees with each: 1. pair: 484.0
node 127:
              Node in 415 trees.
                                        Optimal states and count of trees with each: 1. pair: 415.0
node 128:
              Node in 326 trees.
                                        Optimal states and count of trees with each: 1. pair: 326.0
node 132 ·
              Node in 496 trees. Optimal states and count of trees with each: 1. pair: 496.0
                                        Optimal states and count of trees with each: 1. pair:
              Node in 395 trees.
              Node in 43 trees. Optimal states and count of trees with each: 1. pair: 43.0 Node in 63 trees. Optimal states and count of trees with each: 1.+2.pairs: 63.0 Node in 387 trees. Optimal states and count of trees with each: absent: 387.0
node 137:
node 140:
node 146:
node 147:
              Node in 408 trees. Optimal states and count of trees with each: absent: 408.0
              Node in 500 trees. Optimal states and count of trees with each: absent: 500.0
node 151:
node 154:
              Node in 484 trees. Optimal states and count of trees with each: absent: 484.0 Node in 205 trees. Optimal states and count of trees with each: absent: 205.0
node 158: Node in 498 trees. Optimal states and count of trees with each: absent: 498.0
                --- Values for Current Tree ---
For character 2, Parsimony steps: 23 (unordered)
For character 2, C.I.: 0.21739130
For character 2, R.I.: 0.66037736
(C) RECONSTRUCTIONS OF MORPHOLOGY OF EFNs
----- Trace Character History -----
Character: EFN morphology
Parsimony reconstruction (Unordered) [Steps: 3]
node 3:
           absent
node 4:
node 5:
           absent
node 6.
            absent
node
            absent
node 8:
            absent
node 10:
            absent
node
node 12:
             absent
node 13:
             absent
node 14:
            absent
node 15:
             substitutive
      16:
             substitutive
node 17:
             substitutive
node 18:
             substitutive
node 19:
            substitutive
node 20.
             substitutive
```

node 22:

node 23

substitutive

substitutive node 24: substitutive

```
substitutive
node 25:
node 26:
node 27:
              substitutive
               substitutive
node 28:
node 29:
              absent, substitutive absent, substitutive
node 30:
              true
node
       31:
               true
node 32:
              true
node 33:
node 34:
               true
              true
              true
true
node 35:
node 36:
node 37:
              true
node 38:
node 39:
              true
node 40:
              true
node 41:
              true
node 42:
node 43:
              true
true
node 44:
              true
node 45:
node 46:
               true
              true
node 47:
node 48:
               true
              true
node 49:
              true
node 50:
               true
node 51:
              true
node 52:
node 53:
              true
node 54:
              true
node 55:
              true
node 56:
node 57:
              true
true
node 58:
              true
node 59:
node 60:
               true
              true
node 61:
node 62:
              true
true
node 63:
              true
node 64:
node 65:
              true
node 66:
node 67:
              true
true
node 68:
              true
node 69:
node 70:
              true
              true
node
               true
      72:
node
              true
node 73:
node 74:
node 75:
              true
              true
              true
node
               true
node 77:
              true
node 78:
node 79:
               true
              true
node 80:
              true
node 81:
              true
node 82:
              true
node 83:
node 84:
               true
              true
node 85:
node 86:
              true
node 87:
node 88:
              true
true
node 89:
              true
node 90:
node 91:
              true
node 92:
node 93:
              true
              true
node 94:
              true
node 95:
node 96:
              true
node 97:
node 98:
               true
              true
node 99:
node 100:
              true
true
node 101:
node 102:
               true
true
node 103:
                true
node 104:
node 105:
                true
node 106:
node 107:
                true
true
node 108:
                true
node 109:
node 110:
                true
node 111:
node 112:
                true
true
node 113:
                true
node 115:
                true
node 116:
node 117:
                true
                true
node 118:
node 119:
                true
true
node 120:
                true
node
       121:
                true
node 122:
                true
node 123:
node 124:
                true
                true
true
node 125:
node 126:
node 127:
                true
```

node 128: node 129:

true

```
node 130:
            true
node 131:
node 132:
            true
node
     133:
            true
node
            true
node
     135:
            true
            true
node
     137:
            true
node
     138.
            true
node 139:
            true
node 140 ·
            true
node
            true
node 142:
            true
node 143:
node 144:
            true
node 145.
            true
     146:
node
            true
node 147:
            true
node
            true
node
     149:
            absent
     150:
node
     151:
node
            absent
node 152 ·
            absent
node 153:
            absent
node 154:
            absent
node 156:
            absent
node 157 ·
            absent
node 158:
            absent
node 159:
            absent
node 160:
            absent
node 161:
            absent
node 163:
            absent
node 164:
            absent
```

----- Trace Character Over Trees -----

EFN morphology
Reconstructed Ancestral States (Parsimony Ancestral States) over 500 trees. Shown for each state at each node is the number of trees on which the reconstructed state set at the node includes that state (it may also include other states as equally or sufficiently optimal according to the reconstruction criteria).

```
Node in 500 trees. Optimal states and count of trees with each: absent: 500.0 Node in 457 trees. Optimal states and count of trees with each: absent: 457.0
node 2:
node 3:
node 5:
          Node in 143 trees. Optimal states and count of trees with each: absent: 143.0 Node in 65 trees. Optimal states and count of trees with each: absent: 65.0
node
           Node in 457 trees. Optimal states and count of trees with each: absent: 457.0

Node in 496 trees. Optimal states and count of trees with each: absent: 496.0

Node in 353 trees. Optimal states and count of trees with each: absent: 341.36263736; true: 6.78846154; substitutive:
node 10:
node 13:
node 14: Node in 410 trees. Optimal states and count of trees with each: absent: 404.08653846; true: 5.91346154 node 15: Node in 487 trees. Optimal states and count of trees with each: absent: 404.08653846; true: 5.91346154
            Node in 487 trees. Optimal states and count of trees with each: absent: 12.48717949; true: 6.72386588; substitutive:
467.78895464
            Node in 182 trees.
                                     Optimal states and count of trees with each: substitutive: 182.0
node 16:
node 17:
            Node in 235 trees.
Node in 497 trees.
                                     Optimal states and count of trees with each: substitutive: 235.0 Optimal states and count of trees with each: substitutive: 497.0
node 18:
            Node in 113 trees.
            Node in 113 trees. Optimal states and count of trees with each: substitutive: 113.0
Node in 495 trees. Optimal states and count of trees with each: absent: 223.91722810; true: 35.25505294; substitutive:
node 22:
node
235.82771896
            Node in 466 trees.
                                     Optimal states and count of trees with each: true: 409.0 Optimal states and count of trees with each: true: 500.0
node 31:
            Node in 409 trees.
            Node in 500 trees.
            Node in 363 trees.
node 33:
                                      Optimal states and count of trees with each:
                                                                                               true:
node 34:
            Node in 225 trees.
                                      Optimal states and count of trees with each: true: 225.0
            Node in 294 trees.
                                      Optimal states and count of trees with each: true:
     36:
node
node 37:
            Node in 495 trees.
                                      Optimal states and count of trees with each: true: 495.0
            Node in 484 trees.
                                      Optimal states and count of trees with each: true: 484.0
node 41:
            Node in 431 trees.
                                      Optimal states and count of trees with each: true: 431.0
                                      Optimal states and count of trees with each: true:
node 43:
            Node in 480 trees.
                                                                                                       480 0
                                      Optimal states and count of trees with each: true:
     44:
            Node in 500 trees.
                                                                                                       500.0
node
            Node in 403 trees.
Node in 227 trees.
                                     Optimal states and count of trees with each: true: 403.0 Optimal states and count of trees with each: true: 227.0
node 48:
node 53:
            Node in 487 trees.
                                     Optimal states and count of trees with each: true: 487.0
      55:
            Node in 448 trees.
                                      Optimal states and count of trees with each: true:
node 56:
            Node in 479 trees.
                                     Optimal states and count of trees with each: true:
                                                                                                       479.0
            Node in 500 trees. Optimal states and count of trees with each: true: 500 Node in 71 trees. Optimal states and count of trees with each: true: 71.0
                                                                                                      500.0
node 63:
node 64:
            Node in 26 trees. Optimal states and count of trees with each: true: 26.0
node 65:
                   in 497 trees. Optimal states and count of trees with each: true:
node
             Node
            Node in 480 trees.
node 67:
                                     Optimal states and count of trees with each: true: 480.0
            Node in 6 trees. Optimal states and count of trees with each: true: 6.0 Node in 499 trees. Optimal states and count of trees with each: true: 499.0
node
     76:
node
            Node in 498 trees.
node
                                     Optimal states and count of trees with each: true: 498.0 Optimal states and count of trees with each: true: 477.0
             Node in 477 trees.
node
node 79:
            Node in 423 trees.
                                     Optimal states and count of trees with each: true: 423.0
            Node in 500 trees.
                                      Optimal states and count of trees with each: true:
node 81:
            Node in 499 trees.
                                     Optimal states and count of trees with each: true: 499.0
node 86:
            Node in 339 trees.
                                      Optimal states and count of trees with each: true:
                                                                                                       339.0
node 87:
            Node in 499 trees.
                                      Optimal states and count of trees with each: true:
                                                                                                       499.0
node 88:
            Node in 262 trees.
                                      Optimal states and count of trees with each: true: 262.0
node 89:
            Node in 349 trees.
                                      Optimal states and count of trees with each: true:
node 95:
            Node in 132 trees.
                                      Optimal states and count of trees with each: true:
                                                                                                       132.0
     96:
             Node
                  in 496 trees.
                                      Optimal
                                                states and
                                                                     of trees with each: true:
node 97:
            Node in 498 trees.
                                      Optimal states and count of trees with each: true: 498.0
                                      Optimal states and count of trees with each: true: 497.0
node 98:
            Node in 497 trees.
             Node in 498 trees.
node 104:
                                       Optimal states and count of trees with each: true:
                                                                                                        498.0
node 106.
             Node in 500 trees
                                       Optimal states and count of trees with each: true: 500.0
              Node in 327 trees.
                                                 states and count
                                                                       of trees with
node 112:
             Node in 496 trees.
                                       Optimal states and count of trees with each: true: 496.0
node 113: Node in 496 trees. Optimal states and count of trees with each: true: 496.0 node 114: Node in 332 trees. Optimal states and count of trees with each: true: 332.0
```

```
node 115: Node in 86 trees. Optimal states and count of trees with each: true: 86.0 node 117: Node in 500 trees. Optimal states and count of trees with each: true: 500.0 node 118: Node in 484 trees. Optimal states and count of trees with each: true: 484.0 node 127: Node in 415 trees. Optimal states and count of trees with each: true: 485.0 node 128: Node in 326 trees. Optimal states and count of trees with each: true: 326.0 node 132: Node in 496 trees. Optimal states and count of trees with each: true: 496.0 node 136: Node in 395 trees. Optimal states and count of trees with each: true: 395.0 node 137: Node in 43 trees. Optimal states and count of trees with each: true: 395.0 node 140: Node in 63 trees. Optimal states and count of trees with each: true: 63.0 node 146: Node in 387 trees. Optimal states and count of trees with each: sbsent: 387.0 node 147: Node in 408 trees. Optimal states and count of trees with each: absent: 387.0 node 151: Node in 500 trees. Optimal states and count of trees with each: absent: 500.0 node 154: Node in 484 trees. Optimal states and count of trees with each: absent: 408.0 node 155: Node in 205 trees. Optimal states and count of trees with each: absent: 484.0 node 158: Node in 498 trees. Optimal states and count of trees with each: absent: 498.0 node 158: Node in 498 trees. Optimal states and count of trees with each: absent: 498.0 node 158: Node in 498 trees. Optimal states and count of trees with each: absent: 498.0 node 158: Node in 498 trees. Optimal states and count of trees with each: absent: 498.0 node 158: Node in 498 trees. Optimal states and count of trees with each: absent: 498.0 node 158: Node in 498 trees. Optimal states and count of trees with each: absent: 498.0 node 158: Node in 498 trees. Optimal states and count of trees with each: absent: 498.0 node 158: Node in 498 trees. Optimal states and count of trees with each: absent: 498.0 node 158: Node in 498 trees. Optimal states and count of trees with each: absent: 498.0 node 159: Node in 498 trees. Optimal states a
```

LITERATURE CITED

Marazzi B, Sanderson MJ. 2010. Large-scale patterns of diversification in the widespread legume genus *Senna* and the evolutionary role of extrafloral nectaries. *Evolution* **64**: 3570–3592.