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Cross-validation

Cross-validation for ridge regression

The solution of (4) requires specifying the parameter ρ. A K−fold cross-validation (CV) scheme is
adopted for this purpose with typical choices of K = 5 or 10, as suggested in [1]. For κ = 1, . . . ,K
the dataset is divided in two parts, namely (Ỹκ, X̃κ) with Ns/K samples and (Ỹ(−κ), X̃(−κ)) with the
remaining (K − 1)Ns/K samples. For each value of ρ on a grid of R = 30 points regularly spaced in
logarithmic scale between 10−6 and 1, the solution to (4) computed using (Ỹ(−κ), X̃(−κ)) is denoted as

(B̃(ρ,κ), F̃(ρ,κ)). The error eκ(ρ) := ∥Ỹκ − B̃(ρ,κ)Ỹκ − F̃(ρ,κ)X̃κ∥2F is obtained and averaged across folds
to obtain the error estimate e(ρ). The value of ρ that attains a minimum e(ρ) is selected as the optimal
value. In order to save computations, the grid of ρr values is scanned progressively for r = 1, . . . , R. The
procedure is stopped when e(ρr−1) < e(ρr), and ρr−1 is chosen as the optimal value.

Cross-validation for ℓ1-regularized ML estimation

The CV procedure for selecting λ follows the steps used to select ρ in ridge regression. The sample is
divided into K folds, and for κ = 1, . . . ,K the κ-th fold is set aside for validation. For L values of λ
between λmin = 10−4λmax and λmax, the solution to (3) computed using (Y(−κ),X(−κ)) is denoted as

(B̂(λ, κ), F̂(λ, κ)), and the validation error is computed for each κ using (B̂(λ, κ), F̂(λ, κ)) and (Yκ,Xκ).
Upon averaging the validation errors across κ, an optimal λ is selected as the largest parameter that
minimizes this mean-CV error within one standard deviation.

Stability of model selection under CV with different folds

A set of simulations were run to test robustness of the SML algorithm. First, the fold number of CV was
changed from k = 5 to k = 10 for the DAGs of 30 genes in Figures 2(c) and 2(d) and the DCGs of 30
genes in Figures 3(c) and 3(d) with an expected number of edges Ne = 3. As shown in Figure S1, k = 5
and k = 10 offer almost identical performance. Simulations with a suboptimal λ that is 10% less than the
optimal λ obtained from 5-fold CV were then run for the networks used in Figure S1. As expected, the
suboptimal λ yielded slightly worse performance as shown in Figure S2; the performance degradation is
very small for the DAGs but relatively large for the DCGs, which implies that it is important to choose
the optimal value of λ.

Discarding rules

In Lasso regression, it is known that for a given λ some predictors can be set to zero a priori without
solving the Lasso inference problem [2,3]. Hence, these predictors can be discarded when inferring other
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predictors. Rules for discarding predictors were also derived in [2,3]. In particular, the strong rules in [3]
can discard a large number of predictors, which significantly reduces the computation needed to solve
the Lasso problem. To reduce computational burden and improve the speed of the SML algorithm, the
technique in [3] is employed next to derive strong rules for setting some entries of matrix B to zero a
priori, before running the coordinate-ascent algorithm.

Let B̂(λ) and F̂(λ) denote the optima of (3) for a given λ. Let also Qij(λ) stand for the derivative

of the differentiable part of (3); i.e., Nσ2 log |det(I−B)| − 1
2∥Ỹ −BỸ −FX̃∥2F , w.r.t. Bij evaluated at

B̂(λ) and F̂(λ). Then, Qij(λ) can be found as

Qij(λ) = − Nσ2cij(λ)

det(I− B̂(λ))
+
[
ỸỸT − B̂(λ)ỸỸT − F̂(λ)X̃ỸT

]
ij

(S1)

where cij(λ) is the (i, j)th co-factor of I − B̂(λ), and σ2 can be estimated as σ̂2 = 1
NNg

∥Ỹ − B̂(λ)Ỹ −
F̂(λ)X̃∥2F . Let λmax denote the smallest value of λ that yields B̂ij = 0, ∀i, j (an expression for λmax will
be given later). After recognizing that cij(λmax) = 1, it follows that

Qij(λmax) = −Nσ2 +
[
ỸỸT − F̂(λmax)X̃ỸT

]
ij

(S2)

where F̂(λmax) is obtained by substituting B = 0 into (7). Note that Qij(λmax) can be computed without
knowledge of λmax.

For λ < λmax, the discarding rule is given by

|Qij(λmax)| < wij(2λ− λmax) ⇒ B̂ij(λ) = 0. (S3)

When trying to find solutions of (3) along a path of λ defined with a decreasing set of values λ0 = λmax >
λ1 > . . . > λmin, which are needed in CV, the following alternative rule is possible:

|Qij(λl−1)| < wij(2λl − λl−1) ⇒ B̂ij(λl) = 0. (S4)

Let SB(λl) denote the set of B̂ij(λl) = 0 obtained from (S4) or (S3).

The rationale behind rules (S3) and (S4) is described in the following. By the optimality of B̂(λ), the
KKT condition implies that

Qij(λ) = λwijsij (S5)

where sij is the subgradient of |Bij(λ)|, and sij = 1 if B̂ij(λ) > 0, sij = −1 if B̂ij(λ) < 0, or, sij ∈ [−1, 1]

if B̂ij(λ) = 0. Taking the derivative w.r.t. λ on both sides of (S5) results in
dQij(λ)

dλ =
(
sij + λ

dsij
dλ

)
wij .

Thus, under the assumption that
∣∣∣sij + λ

dsij
dλ

∣∣∣ ≤ 1 (see [3] for a discussion on this assumption), it follows

that ∣∣∣∣dQdλ
∣∣∣∣ ≤ wij . (S6)

Applying the mean-value theorem between λl and λl−1 yields

|Q(λl−1)−Q(λl)| ≤ wij(λl−1 − λl). (S7)

If the inequality in (S4) holds, then (S7) implies |Q(λl)| < λlwij , which in accordance with (S5) yields

|sij | < 1 and thus B̂ij(λl) = 0, as specified by rule (S4). Similarly, one can justify rule (S3).
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Computation of λmax

When λ is sufficiently large such that B̂ = 0, (S5) and the definition of sij imply that∣∣∣∣Qij(λ)

wij

∣∣∣∣ ≤ λ, ∀i, j = 1, . . . , Ng. (S8)

Since Qij(λ) = Qij(λmax) for λ > λmax as indicated in (S2), we obtain

λmax = max
i,j=1,...,Ng

∣∣∣∣Qij(λmax)

wij

∣∣∣∣ , (S9)

being the minimum possible value satisfying (S8) and thereby giving rise to a λ yielding B̂ = 0 in (3).
Substituting Qij(λmax) from (S2) into (S9) yields λmax. Recall from (S2) that Qij(λmax) can be computed
without knowledge of λmax.

Extensions of the SML algorithm

Stability selection

In Algorithm 1, CV is used to select the optimal value of λ that determines the level of sparsity in B̂.
However, it was observed that a single run of CV may not yield a consistent estimate of variables [4,5]. An
alternative approach to choosing appropriate variables is stability selection (STS) [6] that offers a theoret-
ical upper bound on the FDR. We next describe the procedure for applying STS to our SML algorithm.
Upon drawing NSTS random data subsamples of size Ns = ⌊N/2⌋, where ⌊N/2⌋ stands for the largest
integer less than N/2, (3) is solved per subsample and per λ, yielding a collection of estimates B̂ν(λ),

ν = 1, . . . NSTS , λ = λmin, . . . , λmax. Defining an Ng ×Ng matrix T(λ) :=
∑NSTS

ν=1 abs(sgn(B̂ν(λ)) whose

(i, j)th entry counts the nonzero [B̂ν(λ)]ij ’s across ν = 1, . . . , NSTS estimates, edge (i, j) is declared as
stably identified at level λ, if Ti,j(λ) exceeds a threshold δNSTS with δ ∈ (0.6, 0.9). For a given λ, an

upper bound on the FDR resulting from the STS procedure is given by FDR(λ) := q2

(2π−1)N2
g qs

[6], where

q denotes the average number of nonzeros in B̂ν(λ) across ν = 1, · · · , NSTS estimates, and qs the average
number of stably identified edges. Both q and qs, and thus FDR(λ), increase as the sparsity-controlling
parameter λ decreases. Therefore, the optimal λ denoted as λSTS for a target FDR is selected as the
smallest λ satisfying FDR(λ) ≤ FDR. The overall result presents low sensitivity on frequency δ, since
a higher and more restrictive π is automatically compensated for by a lower more permissive λ. Note
that the original STS procedure [6] employs the random LASSO where the weights are randomly selected
from some specified values. In our case, we do not use random weights but still use the weights obtained
from ridge regression, since our simulations show that those weights yield improved performance.

Heteroscedasticity

Removing the assumption that the residual error ϵi in (1) has covariance matrix σ2I, the SML al-
gorithm can be extended to the more general case where the covariance of ϵi is a diagonal matrix
R = diag(σ2

1 , · · · , σ2
Ng

) with unequal diagonal entries σ2
i , i = 1, · · · , Ng. In this case, the log-likelihood

function in (2) becomes log p(Y|X;B,F,µ) = N
2 log |det(I−B)|2−N

2 log[det(R)]−NNg

2 log(2π)− 1
2Tr[(Y−

BY−FX−µ1T )TR−1(Y−BY−FX−µ1T ), where Tr(·) denotes the trace of the matrix in parentheses.
It is easy to show that maximizing this likelihood function w.r.t. µ yields the same expression for µ as
the one obtained earlier by maximizing the likelihood function in (2). Then the objective function in
ridge regression problem (4) becomes Jridge = 1

2Tr[(Ỹ −BỸ − FX̃)TR−1(Ỹ −BỸ − FX̃)] + ρ∥B∥2F =
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∑Ng

i=1

[
1

2σ2
i
∥y̌T

i − bT
i Ỹ − fTi X̃∥22 + ρ∥bi∥22

]
. Therefore, it is again possible to solve (4) row by row

separately, but replace the objective function in (5) with
∑Ng

i=1

[
1
2∥y̌

T
i − bT

i Ỹ − fTi X̃∥22 + ρi∥bi∥22
]
,

where ρi = ρσ2
i . Specifically, problem (5) can be solved with this new objective function and a spe-

cific value ρi that is obtained from CV performed separately for each row. Variance σ2
i is then es-

timated as the residual error for the ith row obtained with estimated bi and fi. The ℓ1-regularized
ML problem (3) can also be reformulated by replacing the objective function with the following one:
JML = N log |det(I − B)| − 1

2Tr
[
(Ỹ − BỸ − FX̃)TR−1(Ỹ − BỸ − FX̃)

]
− λ∥B∥1,W . With this new

objective function, (11) becomes gij(Bij) = Nσ̂2
i log |α0 − cijBij |+α1Bij − 1

2α2B
2
ij −λσ̂2

iwij |Bij |, where
σ̂2
i is the estimate of σ2

i . Therefore, the coordinate-ascent algorithm can be easily modified by replacing
σ̂2 with σ̂2

i and wij with wij σ̂
2
i in gij(Bij) to estimate Bij .

Identification of eQTLs

The SML algorithm can be extended to handle the case where some or all phenotypes have unidentified
cis-eQTLs, if a new penalty term, that involves the weighed ℓ1-norm of the entries of F excluding those
corresponding to the identified cis-eQTL, is added to the objective function in (3). In this case, it is only
necessary to modify line 13 of the SML algorithm as follows. Consider redefining f̌i as the one that contains
the entries of fi corresponding to the known cis-eQTLs and let f̌ ′i contain the remaining entries of fi. Sim-
ilarly, let X̌i collect rows of X̃ corresponding to the known cis-eQTLs and X̌′

i contain the remaining rows

of X̃. Then on line 13 of the SML algorithm, (7) is replaced by f̌i =
(
X̌iX̌

T
i

)−1
X̌i

(
y̌i − Y̌ib̌i − X̌′T

i f̌ ′i
)

with f ′i taking values obtained in the previous iteration. The entries of f ′i can be updated using the
coordinate ascent method in the glmnet algorithm [7] for Lasso based linear regression.

State-of-the-art algorithms

Adaptive Lasso-based algorithm

The AL-based algorithm [8] involves three basic steps: the first one performs standard eQTL mapping
to identify a cis-eQTL per gene; the second one applies the adaptive Lasso [9] to infer the SEM; and the
third step performs a permutation test to ensure that edges in the network obtained from the second step
correspond to correct dependencies in the directed graph. Since the core of the AL-based algorithm is
the adaptive Lasso in step 2, it is described here briefly for completeness. The adaptive lasso estimates
B and F as follows

(B̂, F̂) = argmax
B,F

−1

2
∥Ỹ −BỸ − FX̃∥2F − λψW (B,F)} (S10)

subject to Bii = 0,∀i = 1, . . . , Ng, Fjk = 0, ∀(j, k) ∈ Sq

where ψW (B,F) :=
∑Ng

i=1

∑Ng

j=1 wij |Bij | +
∑Ng

i=1

∑Nq

j=1 vij |Fij |. Weights wij and vij are given by wij :=

|B̃ij |−1/2 and vij := |F̃ij |−1/2, where B̃ij and F̃ij are obtained by solving the following Lasso problem

(B̃, F̃) = argmax
B,F

−1

2
∥Ỹ −BỸ − FX̃∥2F − ρψ(B,F)} (S11)

subject to Bii = 0,∀i = 1, . . . , Ng, Fjk = 0,∀(j, k) ∈ Sq

with ψ(B,F) :=
∑Ng

i=1

∑Ng

j=1 |Bij | +
∑Ng

i=1

∑Nq

j=1 |Fij |. Constants λ and ρ are obtained via CV. We
obtained the program implementing the AL-based algorithm from the authors of [8] and used it in our
simulation studies. In this program, the glmnet algorithm [7] is employed to solve Lasso problems (26)
and (27).
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QDG Algorithm

The QDG algorithm [10] first builds an undirected graph for the phenotypes under consideration, using
an undirected dependency graph [11] or a skeleton derived from the PC algorithm [12]. It then orients
edges in the undirected graph by using a score calculated from the likelihood of the data for different
edge directions. The edge orientation process is performed iteratively for each edge until no edge changes
its direction. We obtained the program implementing the QDG algorithm from the authors [10] and used
the default settings of the program in our simulations.
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