

Supplemental Figure 1. Alignment of the genomic sequences with similarity to dhs genes identified from Convolvulus arvensis. Exons are numbered according to Reimann et al. (2004). carv-1 is interpreted as functional DHS-coding gene, carv-2 and carv-3 are most likely pseudogenes. In the first line the amino acid sequence encoded by the exon sequences of carv-1 is given. Predicted exon regions are boxed, the respective coding sequences are given in upper case characters. Lower case characters indicate intron sequences. Hyphens indicate sequence gaps. Of intron 5 of carv-3 with a total length of 2949 bp only 334 bp are shown in this alignment. The putatively modified splicing cite within exon5 of carv-3 is indicated by an arrow.

Supplemental Figure 2. Tissue-specific expression of DHS and HSS in various plant organs. A. Transcript detection by RT-PCR of the PA-producing species *I. neei, I. hederifolia*, and the PA-free species *I. alba.* 1 µg total RNA of various plant organs was reverse-transcribed and DHS- and HSS-coding cDNAs were amplified by PCR with gene-specific primers. The expected size of PCR products was 1200 bp for HSS and DHS of *I. hederifolia* and *I. neei* and 600 bp for HSS and DHS of *I. alba.* A 100- bp DNA size marker is shown. **B.** Protein gel-blot analysis for HSS of *I. neei.* 20 µg of soluble protein extracted from the same plant organs as used for RT-PCR were separated by SDS-PAGE and blotted onto a polyvinylidene difluoride membrane. HSS was detected with an affinity-purified antibody against HSS of *I. neei.* As a positive control, 100 ng of purified recombinant HSS protein was applied. The recombinant HSS protein contained a 6xHis tag resulting in a slightly increased protein size in comparison with the native HSS. mw marker, molecular weight marker.

Supplemental Table 1. Genomic organization of *dhs* and *hss* genes of the Convolvulaceae species *I. neei*, *I. alba*, *I. purpurea*, *C. tricolor*, and *C. arvensis*. Numbering of introns follows the genomic organization of the *dhs* gene from *H. sapiens*. The number, position, length, and phase of the introns are given. Introns 3 and 7 are missing in all Convolvulaceae genes. Pseudogenes *carv-2* and *carv-3* are shaded in gray. Variation of the exon lengths is only observable in exon 1 and 9 (framed in gray).

Species (gene)	E 1	1	E 2	12	E 3	(I 3)	E 4	14	E 5	Ι5	E 6	16	Ε7	(I 7)	E 8	18	E 9
Intron position	2 E 1	19 bp	3 E 2	87 bp	50 E3	09 bp	6 E 4	06 bp]	6 E 5	693 bp	8: E6	26 bp	9 <u> </u>	36 bp	1 E 8	026 bp]	E 9
Intron phase		0		0		-		0		0		1		-		0	
I. neei (dhs)	219	358	168	588	122	0	97	293	87	176	133	76	110	0	126	117	87
I. alba (dhs)	219	369	168	794	122	0	97	422	87	338	133	78	110	0	126	96	87
I. purpurea (dhs)	a)	a)	a)	630	122	0	97	405	87	176	130	80	110	0	a)	a)	a)
I. purpurea (dhs)	216	443	168	227	122	0	97	407	87	163	130	79	110	0	126	223	87
C. tricolor (dhs)	a)	105	168	291	122	0	97	340	87	109	133	76	110	0	126	192	a)
C. arvensis (dhs)	a)	300	168	593	122	0	97	432	87	343	133	85	110	0	126	236	a)
I. neei (hss)	210	2736	168	538	122	0	97	76	87	943	133	82	110	0	126	118	78
I. hederifolia (hss)	210	2971	168	521	122	0	97	77	87	584	133	82	110	0	126	114	78
I. alba (hss)	210	1164	168	756	122	0	97	78	87	1158	133	85	110	0	126	121	78
C. arvensis (carv-2)	a)	a)	a)	582	122	0	97	160	х	х	133	80	110	0	126	405	a)
C. arvensis (carv-3)	213	1319	168	1001	122	0	97	139	67	2948	132	80	110	0	126	91	78
dhs/H. sapiens ^{b)}	207	1233	165	238	122	80	97	79	87	2060	106	79	104	965	126	83	96

^{a)} 5' and 3' ends are missing because of amplification with degenerate primers that bind within the sequence

^{b)} GenBank accession number NC_000019.8

Supplemental Table 2. Distances from pairwise comparisons of selected pairs of DHS- and HSS-coding cDNA sequences from the Convolvulaceae. d_{aa} , amino acid distance; d_{na} , nucleotide distance. Distances for paralogous sequences are given in bold.

d _{aa} d _{na}	DHS I. hederifolia	DHS I. meyeri	DHS I. alba	DHS I. purpurea	DHS Merremia quinquefolia	HSS <i>I. neei</i>	HSS I. hederifolia	HSS I. meyeri	HSS I. alba	HSS <i>M. quinquefolia</i>
DHS I. neei	0.0141 0.0226	0.0249 0.0312	0.0248 0.0311	0.0285 0.0287	0.0503 0.0560	0.1409 0.1370				
DHS I. hederifolia		0.0177 0.0324	0.0177 0.0312	0.0177 0.0275	0.0357 0.0509		0.1250 0.1257			
DHS I. meyeri			0.0177 0.0287	0.0285 0.0227	0.0433 0.0510			0.1299 0.1492		
DHS I. alba				0.0285 0.0239	0.0321 0.0472				0.0975 0.1296	
DHS I. purpurea					0.0467 0.0422					
DHS <i>M. quinquefolia</i>										0.1448 0.1537
HSS I. neei							0.0141 0.0083	0.0508 0.0487	0.0772 0.0512	0.1249 0.1296
HSS I. hederifolia								0.0581 0.0550	0.0772 0.0550	0.1290 0.1338
HSS I. meyeri									0.0731 0.0642	0.1198 0.1421
HSS I. alba										0.1298 0.1439

Supplemental Table 3. Analyses of codon substitution patterns. Dataset A. The loglikelihood values and parameter estimates for various models of evolution are given. Numbering of the amino acid positions is based on the amino acid sequence of the DHS from *I. hederifolia*, position 1 is defined as the start codon in the open reading frame.

Model Code	Likelihood (InL)	ts/tv	Estimates of Parameters	Positively selected sites ^{b)}
M0 (one ratio)	-3535.17	2.443	ω = 0.12284	Not calculated
Site Models	S			
M1a (Nearly Neutral)	-3498.75	2.604		Not calculated
M2a (Positive	-3498.75	2.604		No sites identified
Branch Model	-3525.32	2.452	$ω_0 = 0.091 \stackrel{a}{}^{a} ω_a = 0.202 \stackrel{a}{}^{a} ω_B = 0.094 \stackrel{a}{}^{a} ω_B = 0.165 \stackrel{a}{}^{a}$	Not calculated
Branch-Sit	e Model A ^{c)}			
Clade a	-3483.06	2.565		E89 D119 T120 H128 P159 L175 D186 I189 L246 D259 P260 P263 N266 I271 I277 N281 G288 I295
				A316 G348 G349
Branch A	-3498.75	2.604	$p_0 = 0.887 \ p_1 = 0.113, \ p_2 = 0.000 \ (0.000 + 0.000)$	No sites identified
Drench D	2400 15	0.000	$(0.000) \omega_0 = 0.063 (\omega_1 = 1.000) \omega_2 = 1.000$	V110 D007
Branch B	-3498.15	2.606	$p_0 = 0.812 p_1 = 0.103 p_2 = 0.086 (0.076 + 0.010) w_2 = 0.060 (w_2 = 1.000) w_2 = 1.000$	VII3 P337
Branch C	-3493.17	2.607	$p_0 = 0.884 p_1 = 0.108 p_2 = 0.008 (0.008 +$	N281 G349
Branch D	-3497.59	2.645	$\begin{array}{l} 0.0009) \ \omega_0 = 0.062 \ (\omega_1 = 1.000) \ \boldsymbol{\omega_2} = \textbf{95.074} \\ p_0 = 0.883 \ p_1 = 0.106 \ p_2 = 0.011 \ (0.010 \ + \\ 0.001) \ \omega_0 = 0.062 \ (\omega_1 = 1.000) \ \boldsymbol{\omega_2} = \textbf{22.923} \end{array}$	T120 P159 L175
Branch-Sit	e Model A wit	h თ. = 1		
Clade a	-3483.15	2.556	$p_0 = 0.789 p_1 = 0.064 p_2 = 0.134 (0.124 +$	Not calculated
Branch A	-3498.75	2.604	$\begin{array}{l} 0.001) \ \omega_0 = 0.043 \ (\omega_1 = 1.000) \ (\omega_2 = 1.000) \\ p_0 = 0.887 \ p_1 = 0.113 \ p_2 = 0.000 \ (0.000 \ + 0.000) \\ 0.0000 \ \omega_1 = 0.063 \ (\omega_1 = 1.000) \ (\omega_2 = 1.000) \end{array}$	Not calculated
Branch B	-3498.15	2.606	$p_0 = 0.812 p_1 = 0.103 p_2 = 0.086 (0.076 +$	Not calculated
Branch C	-3495.86	2.590	0.010) $\omega_0 = 0.060 \ (\omega_1 = 1.000) \ (\omega_2 = 1.000)$ $p_0 = 0.553 \ p_1 = 0.064 \ p_2 = 0.384 \ (0.344 + 0.040) \ \omega_2 = 0.062 \ (\omega_1 = 1.000) \ (\omega_2 = 1.000)$	Not calculated
Branch D	-3497.87	2.591	$p_0 = 0.841 p_1 = 0.103 p_2 = 0.056 (0.050 + 0.006) (\omega_2 = 1.000)$ $p_0 = 0.841 p_1 = 0.103 p_2 = 0.056 (0.050 + 0.006) (\omega_2 = 1.000)$	Not calculated

^{a)} omega ratios were calculated for the branches, labeled in Fig. 3, (ω_a branches in the HSS clade, ω_B HSS branch B, ω_C HSS branch C, ω_D HSS branch D)

^{b)} Numbering of the amino acid positions is based on the amino acid sequence of the DHS from *I. hederifolia.* Position 1 is defined as the start codon in the open reading frame.

^{c)} The models assume four site classes. In site class 0, all lineages are under purifying selection with a small ω ratio ω_0 . In site class 1, all lineages are undergoing weak purifying selection or neutral evolution with ω_1 close to 1. In site class 2 (2a + 2b), a proportion of class-0 and class-1 sites come under positive selection with $\omega_2 \ge 1$ on the foreground lineages (Yang et al., 2005).

Supplemental	Table	4.	Likelihood	Ratio	Test	(LRT)	statistics	and	Ρ	values	for
various tests of	positive	e se	election. Da	taset A	۸.						

Model	Null model	df ^a	LRT (2∆InL)	P values
LRT 1, site model				
M2a (Positive Selection) -3498.75	M1a (Nearly Neutral) -3498.75	2	0	-
LRT 2, branch model				
Branch model -3525.32	M0 -3535.17	4	19.7	0.0006
LRT 3, branch-site model	, positive selection			
Branch-Site Model A	Branch-Site Model A with $\omega_2 = 1$			
Clade a -3483.06 Branch A	-3483.15	1	0.20	-
-3498.75 Branch B	-3498.75	1	0	-
-3498.15 Branch C	-3498.15	1	0	-
-3493.17 Branch D	-3495.86	1	5.38	0.0204□
-3497.59	-3497.87	1	0	-
LRT 4, branch-site model	, relaxed selection			
Branch-Site Model A with $\omega_2 = 1$	M1a (Nearly Neutral)			
Clade a -3483.15 Branch A	-3498.75	2	31.2	0.0000*
-3498.75 Branch B	-3498.75	2	0	-
-3498.15 Branch C	-3498.75	2	1.2	0.5488
-3495.86 Branch D	-3498.75	2	5.78	0.0556
-3497.87	-3498.75	2	1.76	0.4148

^{*a*)} df = degrees of freedom

* Significance corrected for multiple hypothesis testing by Bonferroni's method (Anisimova and Yang, 2007) $P \le 0.01$

 □ Significance corrected for multiple hypothesis testing by B-Y method (Narum, 2006, Benjamini and Yekutiele, 2001) P ≤ 0.02190

Supplemental Table 5. Analyses of codon substitution patterns. Dataset B. The loglikelihood values and parameter estimates for various models of evolution are given. Numbering of the amino acid positions is based on the amino acid sequence of the DHS from *I. hederifolia*: position 1 is defined as the start codon in the open reading frame.

Model Code	Likelihood (InL)	ts/tv	Estimates of Parameters	Positively selected sites ^{b)}
M0 (one ratio)	-3022.60	2.806	ω = 0.134	Not calculated
Site Models	<u>s</u>			
M1a (Nearly Neutral)	-2988.26	2.890		Not calculated
M2a (Positive Selection)	-2988.26	2.890		No sites identified
Branch Models	-3003.18	2.803	$ \omega_0 = 0.074^{a} \omega_a = 0.210^{a} \omega_B = 0.057^{a} $ $ \omega_c = 999.000^{a} \omega_D = 0.433^{a} $	Not calculated
Branch-Site	<u>e Model A</u>			
Clade a	-2974.31	2.845		H157 P188 L204 D215 I218 L246 D259 P260 P263 I271 G275 I277 N281 G288 S289 I295 A316 G348 G349
Branch A	-2988.26	2.890	$p_0 = 0.902 p_1 = 0.098, p_2 = 0.000 (0.000 + 0.000) w_2 = 0.077 (w_2 = 1.000) w_2 = 1.000$	V154 A190
Branch B	-2988.26	2.890	$p_0 = 0.902 p_1 = 0.098, p_2 = 0.000 (0.000 + 0.000) w_2 = 0.077 (w_1 = 1.000) w_2 = 1.000$	V113 P337
Branch C	-2978.59	2.863	$p_0 = 0.837 p_1 = 0.075 p_2 = 0.087 (0.080 + 0.007) w_2 = 0.075 (w_1 - 1.000) w_2 = 999 000$	D148 N266 I277 N281 G421
Clade c	-2984.50	2.884	$p_0 = 0.856 p_1 = 0.083 p_2 = 0.061 (0.056 + 0.005) w_2 = 0.072 (w_1 = 1.000) w_2 = 2.269$	
Branch D	-2988.26	2.890	$p_0 = 0.902 p_1 = 0.098 p_2 = 0.000 (0.000 + 0.000) w_2 = 0.077 (w_1 = 1.000) w_2 = 1.000$	No sites detected
Branch E	-2986.92	2.952	$p_0 = 0.891 \ p_1 = 0.094 \ p_2 = 0.014 \ (0.013 + 0.001) \ \omega_0 = 0.076 \ (\omega_1 = 1.000) \ \omega_0 = 67.746$	T149 L204
Branch P	-2988.26	2.890	$p_0 = 0.902 p_1 = 0.098 p_2 = 0.000 (0.000 + 0.000) \omega_0 = 0.077 (\omega_1 = 1.000) \omega_2 = 1.000$	
Clade p	-2985.62	2.905	$p_0 = 0.814 p_1 = 0.089 p_2 = 0.097 (0.087 + 0.010) \omega_0 = 0.067 (\omega_1 = 1.000) \omega_2 = 1.000$	
Branch-Site	e Model A wit	hω ₂ = 1		
Clade a	-2974.31	2.885	$p_0 = 0.821 p_1 = 0.034 p_2 = 0.146 (0.140 + 0.006) (m = 0.042 (m = 1.000) (m = 1.000)$	Not calculated
Branch A	-2988.26	2.890	$p_0 = 0.902 p_1 = 0.043 (\omega_1 = 1.000) (\omega_2 = 1.000) p_0 = 0.902 p_1 = 0.098, p_2 = 0.000 (0.000 + 0.000) \omega_1 = 0.077 (\omega_2 = 1.000) \omega_2 = 1.000$	Not calculated
Branch B	-2988.26	2.890	$p_0 = 0.902 p_1 = 0.077 (\omega_1 = 1.000) \omega_2 = 1.000 + 0.000) \omega_1 = 0.077 (\omega_2 = 1.000) (0.000 + 0.000) \omega_2 = 1.000$	Not calculated
Branch C	-2981.73	2.847	$p_0 = 0.000 p_1 = 0.077 (w_1 = 1.000) w_2 = 1.000$ $p_0 = 0.000 p_1 = 0.000 p_2 = 0.384 (0.918 + 0.082) w_2 = 0.075 (w_1 = 1.000) (w_2 = 1.000)$	Not calculated
Clade c	-2984.95	2.845	$p_0 = 0.821 \ p_1 = 0.034 \ p_2 = 0.145 \ (0.140 + 0.006) \ \omega_0 = 0.057 \ (\omega_1 = 1.000) \ (\omega_2 = 1.000)$	

Branch D	-2988.26	2.890	$p_0 = 0.902 p_1 = 0.098 p_2 = 0.000 (0.000 +$	No sites detected
			0.000) $\omega_0 = 0.077 \ (\omega_1 = 1.000) \ (\omega_2 = 1.000)$	
Branch E	-2987.58	2.880	$p_0 = 0.856 p_1 = 0.090 p_2 = 0.054 (0.0490 +$	Not calculated
			0.005) $\omega_0 = 0.073 \ (\omega_1 = 1.000) \ (\omega_2 = 1.000)$	
Branch P	-2988.26	2.890	$p_0 = 0.902 p_1 = 0.098 p_2 = 0.000 (0.000 +$	
			0.000) $\omega_0 = 0.077 (\omega_1 = 1.000) \omega_2 = 1.000$	
Clade p	-2985.62	2.905	$p_0 = 0.814 p_1 = 0.089 p_2 = 0.097 (0.087 +$	
			0.010) $\omega_0 = 0.067 (\omega_1 = 1.000) \omega_2 = 1.000$	

^{a)} omega ratios were calculated for the branches, labeled in Fig. 3, (ω_a branches in the HSS clade, ω_B HSS branch B, ω_C HSS branch C, ω_D HSS branch D)
^{b)} Numbering of the amino acid positions is based on the amino acid sequence of the DHS from *I. hederifolia.* Position 1 is defined as the start codon in the open reading frame.

Supplemental Table 6. Likelihood Ratio Test (LRT) statistics and P values for various tests of positive selection. Dataset B.

Model	Null model	df ^{a)}	LRT (2∆InL)	P values
LRT 1, site model				
M2a (Positive Selection) -2988.26	M1a (Nearly Neutral) -2988.26	2	0	-
LRT 2, branch model				
Branch model -3003.18	M0 -3022.60	4	38.84	0.0000
LRT 3, branch-site model,	positive selection			
Branch-Site Model A	Branch-Site Model A with $\omega_2 = 1$			
Clade a -2974.31 Branch A	-2974.31	1	0	-
-2988.26 Branch B	-2988.26	1	0	-
-2988.26 Branch C	-2988.26	1	0	-
-2978.59 Clade c	-2981.73	1	6.28	0.0122□
-2984.50 Branch D	-2984.95	1	0.9	0.3428
-2988.26 Branch E	-2988.26	1	0	-
-2986.92 Branch P	-2987.58	1	1.32	0.2506
-2988.26 Clade p	-2988.26	1	0	-
-2985.62	-2985.62	1	0	-
LRT 4 Branch-site model, r	elaxed selection			
Branch-Site Model A with $\omega_2 = 1$	M1a (Nearly Neutral)			
Clade a -2974.31 Branch A	-2988.26	2	27.9	0.0000* 🗆
-2988.26 Branch B	-2988.26	2	0	-
-2988.26 Branch C	-2988.26	2	0	-
-2981.73 Clade c	-2988.26	2	13.1	0.0014* 🗆
-2984.95 Branch D	-2988.26	2	6.62	0.0365
-2988.26 Branch E	-2988.26	2	0	-
-2987.58 Branch P	-2988.26	2	1.4	0.4966
-2988.26	-2988.26	2	0	-
-2985.62	-2988.26	2	5.3	0.0707

^{a)} df = degrees of freedom * significance corrected for multiple hypothesis testing by Bonferroni's method (Anisimova and Yang, 2007) P ≤ 0.0056

□ significance corrected for multiple hypothesis testing by B-Y method (Narum, 2006, Benjamini and Yekutiele, 2001) P ≤ 0.01767

Supplemental Table 7. Nucleotide sequence of primers. For degenerate primers P1-P4, the IUPAC code is used: D = A + G + T; H = A + T + C, K = G + T, M = A + C, N = A + T + C + G, R = A + G, S = C + G, W = A + T and Y = C + T, I = Inosin

Primer	Sequence	Properties and Purpose
P1	5'-dGTC GAC TCG AGA ATT C(T) ₁₇ -3'	oligo(dT) primer
P2	5'-TTH YTD GGI TTY ACD TCI AAY CT-3'	degenerate primer
P3	5'-ATY TTI CCC CAN GAI AYN GCY TC-3'	degenerate primer
P4	5'-GGA AAG AAA TTA ATG ATG AAA GCT CGT ATT TA-3'	3'RACE DHS <i>I. neei</i>
P5	5'-GCG ATT TTT CGT TAC CAG GTT CTA TGC-3'	3'RACE HSS <i>I. neei</i>
		<i>hss</i> gene of <i>I. neei</i>
P6	5'-CCT GGA GCT GCA TTA CGC TCA AAG-3'	3'RACE DHS <i>M. quinquefolia</i>
P7	5'-TTC CTT GAA GGG ATC TGT ACT GCG CTC-3'	3'RACE HSS <i>M. quinquefolia</i>
P8	5'-TCT GCA CCA TTG CGC ATC AT-3'	5'RACE HSS <i>I. neei</i> (GSP1)
P9	5'-AAG CGC TCC GGT CTT CCT AGG ACT G-3'	5'RACE HSS <i>I. neei</i> (GSP2)
P10	5'-CTA CAA TGT CAA TGA TTA GAC CAG GAT GA-3'	5'RACE HSS <i>I. neei</i> (GSP3)
P11	5'-CCA TTG CGC ATC ATA TT-3'	5'RACE DHS and HSS <i>M. quinquefolia</i> (GSP1)
P12	5'-GAC GGT CTG GAT TAT CTC CAG CTT CCT-3'	5'RACE DHS <i>M. quinquefolia</i> (GSP2)
P13	5'-CCA TTC TTG TGT GCC CAG TAT AAG TAC G-3'	5'RACE DHS <i>M. quinquefolia</i> (GSP3)
P14	5'-CCA GGG TAA CGA TCT GGA TTA TTT GGA TC-3'	5'RACE HSS <i>M. quinquefolia</i> (GSP2)
P15	5'-GGG CAG AAG ACA GGA ATT TTG TTC TTG TAT GC-3'	5'RACE HSS <i>M. quinquefolia</i> (GSP3)
P16	5'-ATA TA <u>C ATA TG</u> G GAG AAG ATA CCA GAG ATC-3'	expression DHS of <i>I. neei, I. meyeri</i> (<i>Nde</i> I); <i>dhs</i> gene of
		I. alba, I purpurea, C. arvensis
P17	5'-ATA TA <u>C TCG AG</u> T TGA TTG CCT GTG GAA TTT TTA-3'	expression DHS of <i>I. neei, I. meyeri</i> (<i>Xho</i> I); <i>dhs</i> gene of
		I. alba, I. purpurea, C. arvensis
P18	5'-TAT A <u>ca tat g</u> gg gga agc cat taa aga tga gaa t-3'	expression HSS of I. neei, I. meyeri, I alba, and I. hederifolia
-		(Ndel); hss gene of C. arvensis, I. neel
P19	5'-ATA <u>CTC GAG</u> ATG AAA TTT TAT AGC TTT AGT TGC AAA TGT C-3'	expression HSS of <i>I. neei</i> , <i>I. meyeri</i> , <i>I. alba</i> , and <i>I. hederifolia</i>
Baa		(Xhol); hss gene of C. arvensis, I. neei
P20	5'-TAT A <u>CA TAT G</u> GG AGA AGC CAC GAG AGA TCA GAA C-3'	expression DHS of <i>M. quinquefolia</i> (<i>Ndel</i>)
P21	5'-TAT ACT CGA GTA GAG TGT CGG TGG ATT TTT TAG CTA TAG TTG C-3'	expression DHS of M. quinquefolia (Xnoi)
P22	5'-TAT ACA TAT GGG AGA AGT CTT CAA TGG CGC T-3'	expression HSS of <i>M. quinquefolia</i> (<i>Ndel</i>)
P23	5'-IAI AUI CGA GGI GCU III IAI IAG CCT TAG CTG C-3'	expression HSS of <i>IN. quinquefolia</i> (Xnol)
P24	5'-GGU KAA GUU ATU MAA ATT GTT AAY G-3'	degenerate primer
P25	5'-CAA AAI CII YTT RGG STT CAC RTC MAA CC-3'	degenerate primer

P26	5 ′ -CRC	CAT	TKC	GCA	TCA	TAT	TSG-	-3′							degenerate primer
P27	5 ′ -AKD	GGR	AAW	GCA	ATK	GTT	GCA	TCA	C-3′	,					degenerate primer
P28	5 ′ -GGG	ACA	TTA	CCT	TAT	GAT	GTG	TTT	TCT	CTT-	-3′				hss gene of <i>I. neei</i> by inverse PCR
P29	5 ′ -AGT	GTG	TTG	TGT	GCC	ATA	GAA	GAC	CAT	TA-3	3′				hss gene of I. neei by inverse PCR
P30	5'-TAA	CTC	TAT	ATG	TAT	TCA	CAT	TGT	TCA	AAT	TTA	-3′			hss gene of I. neei
P31	5'-CCA	AAT	AAT	CCA	GAC	CAC	CAC	CCT	GGT	CTA	ATC	ATT	G-3	'	site-specific mutagenesis of DHS of <i>I. neei</i> (mutation N266H)
															forward
P32	5'-CAA	TGA	TTA	GAC	CAG	GGT	GGT	GGT	CTG	GAT	TAT	TTG	G		site-specific mutagenesis of DHS of <i>I. neei</i> (mutation N266H)
															reverse
P33	5 ′ -GAT	ATT	GTG	GGA	GAT	GTC	AGG	GCC	ATG	GAT	GGT	GAG	GCT	G-3′	site-specific mutagenesis of DHS of <i>I. neei</i> (mutations I277V
															and N281D) forward
P34	5'-CAG	CCT	CAC	CAT	CCA	TGG	CCC	TGA	CAT	CTC	CCA	CAA	TAT	C-3′	site-specific mutagenesis of DHS of <i>I. neei</i> (mutations I277V
															and N281D) reverse
P35	5 ′ -TTT	TCT	TTA	CCT	GGA	GCT	GTA	TTA	CGC-	-3′					RT-PCR <i>I. alba</i> DHS
P36	5 ′ -CCT	TCA	CTG	TTT	TTG	CTC	CAC	CAC	G-3′						RT-PCR <i>I. alba</i> DHS
P37	5 ′ -TCG	TTA	CCA	GGC	TCT	ATG	CTA	CGC-	-3′						RT-PCR <i>I. alba</i> HSS
P38	5 ′ -CTT	CAC	AGC	TTT	CGC	TCC	ATT	GCG-	-3′						RT-PCR <i>I. alba</i> HSS

Supplemental Table 8. Amplification strategy of DHS- and HSS-coding cDNAs and genes, the length of the identified open reading frame (ORF), the 3'- and 5'-untranslated regions (UTRs), and the accession numbers of sequences identified in this project and taken from the databases. --, not determined

A. cDNA	Organ for RNA isolation	Degenerate Primer	RACE Primer (3' and 5' RACE)	ORF Primer	length of ORF [bp]	5'UTR [bp]	3'UTR [bp]	accession numbers
DHS I. neei	Shoot	P2/P3	P4	P16/P17	1149 bp		260	HF911515
HSS <i>I. neei</i>	Shoot	P2/P3	P5, P8-P10	P18/P19	1131 bp	80	283	HF911516
DHS M. quinquefolia	Seedling	P2/P3	P6, P11-P13	P20/P21	1143 bp	120	308	HF911517
HSS M. quinquefolia	Seedling	P2/P3	P7, P11, P14, P15	P22/P23	1122 bp	43	133	HF911518
DHS I. meyeri	Leaf	-	-	P16/P17	1149 bp			HF911519
HSS I. meyeri	Leaf	-	-	P18/P19	1131 bp			HF911520
DHS I. hederifolia	Shoot	-	-	P16/P17	1149 bp			AJ704845
HSS I. hederifolia	Root	-	-	P18/P19	1131 bp			HF911521
DHS <i>I. alba</i>	Shoot	-	-	P16/P17	1155 bp			HF911522
HSS <i>I. alba</i>	Shoot	-	-	P18/P19	1131 bp			HF911523
B. Gene	-	Degenerate Primer	Additional Primer	ORF Primer	length of genomic fragment			
dhs L neei				P16/P17	2757 bn			HF911504
hss I. neei ^{a)}			P5. P28-P30	P18/P19	5625 bp			HF911505
hss I. hederifolia			-,	P18/P19	5476 bp			HF911506
dhs I. alba (ialb-1)				P16/P17	3072 bp			HF911507
hss I. alba (ialb-2)				P18/P19	4492 bp			HF911508
dhs I. purpurea (ipurp-1)		P25/P26			1919 bp			HF911509
dhs I. purpurea (ipurp-2)				P16/P17	2736 bp			HF911510
dhs C. arvensis (carv-1)		P24/P27			2894 bp			HF911512
hss C. arvensis (carv-2)		P25/P27			1639 bp			HF911513
hss C. arvensis (carv-3)				P18/P19	6691 bp			HF911514
dhs C. tricolor (ctri-1)		P24/P27			2018 bp			HF911511

C. cDNA sequences taken from the database	cited in	
DHS Heliotropium indicum	(Reimann et al., 2004)	AJ704844
HSS Heliotropium indicum	(Reimann et al., 2004)	AJ704843
DHS Symphytum officinale	(Reimann et al., 2004)	AJ704852
HSS Symphytum officinale	(Reimann et al., 2004)	AJ704851
DHS Cynoglossum officinale	(Reimann et al., 2004)	AJ704839
HSS Cynoglossum officinale	(Reimann et al., 2004)	AJ704840
DHS Nicotiana tabacum	(Ober and Hartmann, 1999b)	AJ242017
DHS Solanum lycopersicum		AF296077_1
DHS Crotalaria retusa	(Reimann et al., 2004)	AJ704838
HSS <i>Phalaenopsis</i> sp.	(Reimann et al., 2004)	AJ704848
DHS Eupatorium cannabinum	(Reimann et al., 2004)	AJ704841
HSS Eupatorium cannabinum	(Reimann et al., 2004)	AJ704842
DHS Petasites hybridus	(Reimann et al., 2004)	AJ704846
HSS Petasites hybridus	(Reimann et al., 2004)	AJ704847
DHS Senecio vernalis	(Ober and Hartmann, 1999a)	AJ238622
HSS Senecio vernalis	(Ober and Hartmann, 1999a)	AJ238623
DHS Arabidopsis thaliana		NP_196211
DHS Zea mays	(Nurhayati et al., 2009)	AM411617
DHS Musa acuminata	(Wang et al., 2001)	AF296079_1

^{a)} hss gene of *I. neei* was amplified via three PCRs: P18/P30, P28/P29 (inverse PCR) P5/P19

Supplemental Table 9. Species studied in this project with year and country of collection.

Species	References
Convolvulus arvensis L.	Seed collection Botanical Garden Kiel
Convolvulus tricolor L.	Seed collection Botanical Garden Kiel
<i>Ipomoea hederifolia</i> L. Ella, Sri Lanka (1985)	(Jenett-Siems et al., 1993, 1998, 2005a)
<i>Ipomoea neei</i> (SPRENG.) O'DONELL Boquete, Panama (1995)	(Jenett-Siems et al., 1998, 2005a)
<i>Ipomoea meyeri</i> (SPRENG.) G.DON 93 km to the west of Santiago, Panama (1995)	(Tofern, 1999)
<i>Ipomoea alba</i> L. Tonosi, Panama (1997)	(Tofern, 1999)
<i>Ipomoea purpurea</i> L. Antsirabe, Madagascar (1990)	(Henrici, 1996)
<i>Merremia quinquefolia</i> (L.) H.HALL. Taboga Island, Panama (1997)	(Jenett-Siems et al., 2005a)