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SUPPLEMENTAL SECTION

Decimal Counting System (Fixed radix)

Place 105  10* 10° 102 10"  10°

Max Digit 9 9 9 9 9 9

Digit 0 0 0 0 4 2
4x10"+ 2x10°= 42

Binary Counting System (Fixed radix)

Place 2° 24 23 22 21 20
Max Digit 1 1 1 1 1 1
Digit 1 0 1 0 1 0

1x25 + 0x2* + 1x2% + 0x22 + 1x2' + 0x2° =42

Factorial Counting System (Mixed radix)

Place 5! 4! 3! 2! 1! 0]l
Max Digit 5 4 3 2 1 0
Digit 0O 1 3 0 0 0

1x4! + 3x3! + 0x2! + Ox1! + O0x0! =42

Figure S1: Counting systems

Representation of a number (42) in three different counting systems: decimal (42), binary
(101010), and factorial (13000). Note that decimal and binary are both fixed radix
systems, in which the multiplicative distance between each digit place is the same, and
the set of digits used for each place is the same. The factorial counting system
(factoradics) uses a mixed-radix system in which the multiplicative distance between

each digit place is not the same, and the set of digits used for each place is also not the
same.
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Figure S2: Three complete conversions from permutation to decimal

Three complete translations from permutation to decimal, by way of the factoradic, for a
set of size 4. The permutation to be translated is shown above the grid box, and the
factoradic representation of that permutation is listed to the right of the grid box. Each
row of the grid box determines a digit of the factoradic. The first row of the grid box is
the complete sorted list. To perform the translation, consider the elements of the
permutation progressively from 1 to 4. The digit of the factoradic is equal to the number
of elements of the sorted list to the left of this position. After each digit of the
permutation is considered, the corresponding digit of the sorted list is removed. Note that
the sorted permutation (Top) translates into decimal representation 0. The reverse sorted
permutation (Bottom) translates into decimal representation 4! - 1 = 23, the maximum
number that can be represented by a factoradic of size 4.



. INPUTS: C1,C2 = Ranked feature expression data

M = num features of C1,C2

N = classifier size

. copy C1,C2 to GPU

. hist1,hist2 = allocate zeroed-out N! size histograms on GPU
. hum_combinations = (M choose N)

. num_iterations = num_combinations / GPU memory
. foreach iteration in num_iterations (CPU)

combs = combinations for this iteration

10. copy combs to GPU

11.  parallel foreach combination C in combs (GPU)

©CONOTAWN

12. foreach sample S in C1

13. fact = factoradic for permutation of C in S

14. hist1[decimal(fact)] = hist1[decimal(fact)] + 1
15. foreach sample S in C2

16. fact = factoradic for permutation of C in S

17. hist2[decimal(fact)] = hist2[decimal(fact)] + 1
18. hist1 = normalize(hist1); hist2 = normalize(hist2)
19. scores = sum(hist1 - hist2)

20. copy scores,hist1,hist2 to CPU

21. sort scores and save (CPU)

22. classifiers = top combs over all iterations

23. OUTPUTS: top classifiers, scores, hist1, hist2

Figure S3: Pseudocode for the core operation of the TSN algorithm on the GPU.

This pseudocode does not include code to choose the value of N using apparent accuracy
or determine classification accuracy using cross validation. Lines 11 through 19 are
computed in parallel on the GPU. The GPU is called multiple times depending on the
number of combinations requested and the size of the GPU device memory.
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Figure S4: Cancer dataset statistical tests for differences between values of N.

100 iterations of 5-fold cross validation were run using TSN on all nine cancer datasets
cited in the paper. Four different types of TSN were run: N=2, N=3, N=4, and dynamic
N, where the algorithm was allowed to choose the value of N at each iteration of the cross
validation loop. These four groups were tested using the nonparametric Kruskal-Wallis
test to determine significant differences between the accuracies. A p-value < 0.05 was
considered significant. Error bars in the bar plot indicate standard error, not confidence



intervals. Letters above each bar indicate membership in a significance group. If two
bars share the same letter, they are not significantly different. If two bars do not share the
same letter, they are significantly different. All raw data is included in Additional file 2.
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Figure S5: MAQC-II Statistical tests for differences between values of V.

100 iterations of 5-fold cross validation were run using TSN on all nine MAQC-II
datasets cited in the paper. Four different types of TSN were run: N=2, N=3, N=4, and
dynamic N, where the algorithm was allowed to choose the value of NV at each iteration of
the cross validation loop. These four groups were tested using the nonparametric
Kruskal-Wallis test to determine significant differences between the accuracies. A p-
value < 0.05 was considered significant. Error bars in the bar plot indicate standard error,
not confidence intervals. Letters above each bar indicate membership in a significance
group. If two bars share the same letter, they are not significantly different. If two bars do
not share the same letter, they are significantly different. All raw data is included in
Additional file 4.



AMCC for Dynamic N Over A Range of Feature Sizes
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Figure S6: AMCC boxplots for different input sizes on the MAQC-II dataset

The TSN algorithm is tested in the paper with very small input sizes (up to 16 features).
When the cross validation MCC is compared with the test set MCC, the average
difference is very small (Figure 6), indicating that the level of overfitting with the TSN
algorithm is low. To determine if the low overfitting of the TSN algorithm is due to the
small number of input features we tested all the MAQC-II datasets again using a large
range of input sizes. This process was performed for fixed values of N=2, N=3, and N=4,
as well as dynamic N. The number of features was chosen to yield approximately the
same number of combinations for each classifier size. The feature sizes were chosen to
span a range of combinations from 120 to 50,000,000. The top panel shows the
distribution of AMCC scores for dynamic N, and the 2nd, 3rd, and 4™ panels show the
same calculations for fixed N=2, N=3, and N=4, respectively. Despite the wide range of
input feature sizes, the mean (asterisk) and median (middle line) AMCC scores stay low,
among the lowest of any of the MAQC-II participants. The distance between the lower
and upper quartiles of the data also remains fairly constant, as indicated by the top and



bottom of the box. The whiskers indicate the extreme values. All raw data is included in
Additional file 5.



