SUPPLEMENTAL DATA

THE *sld* GENETIC DEFECT: INTRONIC INSERTION OF TWO CA-REPEATS THAT PROMOTE INSERTION OF THE SUBSEQUENT INTRON AND mRNA DECAY

Biswadip Das, Melanie N. Cash, Bently Robinson, Christopher S. Kuhns, Lisa R. Latchney, Margaret A. Fallon, Rosemary W. Elliott, Arther R. Hand, David J. Culp

Figure 1S. Mapping the *sld* mutation: Phenotyping mice. To identify the *sld* mutant phenotype, we prepared homogenates from frozen excised sublingual glands of F2 mice killed at 3 weeks of age. Homogenates were assayed for the presence or near absence (mutant phenotype) of high molecular weight mucins by SDS-PAGE on gradient gels (3% - 8%). Gels were stained using Alcian blue with subsequent silver enhancement of dye staining. Lane 6 contains molecular weight markers with size (kd) indicated at far left. *sld* phenotype, -; wild type phenotype, +.

Figure 2S. Expression of transcripts within the critical interval in sublingual glands of wild type (WT) and *sld* mutant mice as assessed by RT-PCR. Top row are representative gels from known genes within the critical interval. Bottom two rows are results for EST-based transcripts and *Pdzrn4*, all of which consistently displayed no expression in sublingual glands. In parentheses is the primer set identification for transcripts with more than one amplicon (see Supplemental Table S4). Control tissues other than sublingual glands are identified. SLG, sublingual gland.

Table 1S. Sequence Tagged Sites (STS) used in chromosomal localization of the *sld* mutation. Sequences primers each STS marker available from UniSTS of for are the database (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unists). The total length of each chromosome (Chr) and the positions of STS markers are given in centiMorgans (cM, MGI genetic map position) and in mega-base pairs (Mbp) based on the NCBI genomic sequence, Build 36.1. CAST, CAST/EiJ mouse strain; sld, NFS/N-sld mouse strain; bp, base pair. *, D6Mit42 has multiple alignments in a highly repetitive region of 100 kb.

(Chr (cM)	STS	(cM Mbn)	Product (bp)		Chr (cM)		STS	(cM Mbn)	Product (bp)	
	[Mbp]	515	(CM, MDP)	CAST	sld		Mbp]	515	(CM, MDP)	CAST	sld
1	(127.5)	D1Mit171	(20.2, 36.7)	184	150	10	(77.5)	D10Mit4 (1	9.0, 25.7)	147	134
	[197]	D1Mit7 (4	1.0, 74.9)	152	105		[130]	D10Mit226	(43.0, 79.7)	172	95
		D1Mit140	(70.0, 136.1)	158	150			D10Mit121	(62.0, 114.4)	217	190
		D1Mit116	(100.5, 180.2)	176	146						
						11	(80.0)	D11Mit268	(19.0, 40.7)	112	142
2	2 (115.0)	D2Mit33 ((17.0, 30.4)	384	182		[122]	D11Mit35 ((47.6, 83.5)	234	216
	[182]	D2Mit247	(44.0, 74.9)	142	121			D11Mit253	(71.0, 114.1)	115	85
		D2Mit484	(65.5, 118.3)	146	124						
		D2Mit170	(96.0, 162.3)	129	141	12	(67.0)	D12Mit2 (1	9.0, 36.0)	178	149
							[120]	D12Mit116	(35.0, 80.9)	88	115
3	6 (120.0)	D3Mit333	(22.0, 44.4)	144	126			D12Mit100	(50.0, 104.9)	111	91
	[160]	D3Mit104	(52.5, 107.9)	118	90						
		D3Mit219	(84.9, 154.9)	203	151	13	(80.0)	D13Mit38 ((19.0, 37.7)	156	145
							[121]	D13Mit27 ((42.0, 88.2)	186	205
4	(84.0)	D4Mit214	(17.9, 45.7)	154	129			D13Mit76 ((61.0, 111.7)	118	90
	[155]	D4Mit297	(38.0, 80.7)	136	115						
		D4Mit68 (66.0, 136.4)	130	102	14	(69.5)	D14Mit26 ((19.5, 54.2)	142	126
							[124]	D14Mit32 ((32.5, 69.3)	270	235
5	5 (93.0)	D5Mit4 (2	0.0, 35.9)	238	195			D14Mit9 (5	54.5, 111.8)	244	237
	[152]	D5Mit89 (53.0, 100.5)	180	148						
		D5Mit32 (78.0, 136.2)	148	124	15	(81.5)	D15Mit165	(21.1, 38.0)	166	144
							[103]	D15Mit2 (4	6.9, 80.1)	107	84
6	6 (75.0)	D6Mit42 (20.4, 47.6*)	168	178			D15Mit42 ((59.2, 98.9)	170	184
	[150]	D6Mit36 (46.0, 104.5)	178	195						
		D6Mit111	(63.7, 133.8)	180	150	16	(72.0)	D16Mit103	(22.2, 31.9)	123	103
		D6Mit15 (74.0, 146.4)	220	150		[98]	D16Mit64 ((38.0, 57.5)	245	220
								D16Mit6 (6	53.2, 89.2)	171	185
7	7 (75.4)	$D7M_{1}t69$ (24.5, 48.9)	274	234					105	100
	[145]	D/Mit281	(52.4, 112.0)	207	139	17	(82.0)	D17Mit21 ((18.6, 38.9)	105	122
		$D'/Mit\Gamma'//$	(72.0, 143.8)	161	136		[95]	D17Mit203	(34.3, 59.4)	158	122
								D17Mit190	(54.6, 85.6)	121	110
8	(82.0)	D8Mit63 (15.0, 34.3)	244	222	10		D1016-104		1.50	105
	[132]	D8Mit252	(43.0, 93.8)	138	166	18	(60.0)	D18Mit104	(20.0, 42.0)	159	135
		D8Mit13 (67.0, 126.7)	114	98		[91]	D18Mit152	(37.0, 62.1)	124	145
	(70.5)		70 27 1	150	100			D18Mit25 (57.0, 89.7)	146	128
9	(/9.5)	D9Mit2 $(1$	7.0, 37.1)	159	182	10	$(\boldsymbol{\mathcal{F}}(\boldsymbol{\Omega}))$	D1010-72	(22,0,24,1)	1.((1.4.1
	[124]	D9Mit8 $(4$	(2.0, 70.2)	180	194	19	(56.0)	D19Mit/3 ((22.0, 24.1)	100	141
L		D9Mit16 (01.0, 114.8)	194	1/8		[61]	DI9MitII ((41.0, 44.4)	118	150

Table 2S. Sequence Tagged Sites (STS) derived from genomic sequence between D15Mit34 and D15Mit223. The position in mega-base pairs (Mbp) of each STS on chromosome 15 is given in parentheses and is based on NCBI genomic sequence, Build 36.1, released February 2006. PCR reactions (20 μ l) contained 50 ng genomic DNA (DNeasy Kit, Qiagen), 50 ng primers and 10 μ l Taq Polymerase Master Mix kit (Qiagen) with a cycling profile of 95°C for 5 min, 35 cycles (95°C, 30 sec; 55°C, 120 sec; 72°C, 120 sec) and 7 min at 72°C. Products were analyzed on 4% gels (NuSieve 3:1 agarose; Cambrex Bio Science). bp, base pair.

STS	GenBank Accession	E 1/D D	PCR Product (bp)		
(Mbp)	Number	Forward/Reverse Primers	CAST/EiJ	NFS/N-sld	
D15Roc1 (91.159)	GI:154937296	5'-CCTGATGCTGGAGATGACAAATTC-3' 5'-GGCAGAAATGAGAGGGAGATTGAG-3'	231	201	
D15Roc2 (91.408)	GI:154937297	5'-GGAGCCAGAAGATTAAAACAGATGC-3' 5'-GCTCAAACTCCTCTCCACACTAACTG-3'	266	195	
D15Roc3 (91.609)	GI:154937298	5'-TTTTAGTCCCAATGTTTCCCATCAC-3' 5'-CCAAGCACAAGAATACACAGACGC-3'	325	283	
D15Roc4 (91.631)	GI:154937299	5'-TCCTGACTTCTGCTGCTTGCTATTG-3' 5'-TGGTGCTATATTGATGTCTGCATTCAAG-3'	328	300	
D15Roc5 (91.700)	GI:154937300	5'-GGCTGCTTTGCTTTCAGTTTTGTAG-3' 5'-CCCAGTTACTAAGTGGTTTTTTTGCTTG-3'	290	200	
D15Roc6 (91.763)	GI:154937301	5'-GCACAAAGGTGGATGGATTG-3' 5'-TCAAGGTAGAAGAAGAGGGCAAG-3'	275	224	
D15Roc7 (91.890)	GI:154937302	5'-CAGATCCTCACAAGGCTTTTGACAG-3' 5'-CATAATTTCTCCCTTTCCTCCTTCC-3'	320	370	
D15Roc8 (92.215)	GI:154937303	5'-GGGTTCTCAACCATTTGCTTTTCAG-3' 5'-AACAATCCAAGGAGAGAGAGAGAGGGAG-3'	89	171	
D15Roc9 (92.392)	GI:154937304	5'-GGTCCTATTCCTACATTCTCAGGTTTTG-3' 5'-CCCACCACACAGGTTTTTCTGAAAG-3'	192	175	
D15Roc10 (92.456)	GI:154937307	5'-ATGGTGTTCAAGAGTCTCAGTAAGCAAC-3' 5'-TGAGGCAGGAGGATTGTGGTTGAG-3'	260	237	
D15Roc11 (92.533)	GI:154937306	5'-TGTTCGGTTGCCTGTTACAGAAGTG-3' 5'-GTGCATTACACACAAGGAAACTCGTC-3'	287	334	
D15Roc12 (92.638)	GI:154937305	5'-ATCACCAGGGTCCTAGACTTTCTGTATC-3' 5'-TGACAACGGGTCATCAATATGTTAATTG-3'	220	176	

Table 3S. RT-PCR primers used to detect transcripts within the critical interval. Known transcripts and computer models are identified by their official symbol from NCBI Entrez Gene (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db) whereas ESTs are identified by their locus designation from NCBI Entrez Nucleotide (http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db). The positions of primers is based the GenBank Accession Number (given in parentheses or the EST designation). Amp ID, amplicon identification; Amp (bp), amplicon length in base pairs; Binding Site, location in which primer binds; PCR, three different PCR cycling profiles (A - C) were incorporated to amplify cDNA (10 ng): A, 95°C for 15 min, 25 cycles (94°C, 60 sec; 55°C, 60 sec; 72°C, 60 sec) and 10 min extension at 72°C; B and C, same as A but for 30 and 35 cycles, respectively; *Lrrk2*, leucine-rich repeat kinase 2; *Muc19*, mucin 19; *Smgc*, submandibular gland protein C; *Cntn1*, contactin 1 *Pdzrn4*, PDZ domain containing RING finger 4.

Transcript	Primer Sequence	Binding Site	Amp ID	Amp (bp)	PCR
	5'-GCCACATCTTACTCCTGGATCTTTC-3'	Exon 49	Λ 1	122	D
Lrrk2	5'-TGTACCCCAAAACCAGCATGAC-3'	Exon 50	AI	132	в
(NM_025730)	5'-GGAGGAGGTTCTGAGAAGTTGATAG-3'	Exon 1	<u>۸</u> ၁	361	р
	5'-GACAGGTTTACATTGGCGTGATG-3'	Exon 4	A2		Б
	5'-TAATGCACAATCAAGCAACAAC-3'	Exon 14	D 1	520	٨
Smgc	5'-AATTATGGCTTCCTGAGTCACTC-3'	Exons 17/18	DI	339	A
(NM_198927)	5'-GCTCCTCAGCAGTAGACTCCACAG-3'	Exon 17	DЭ	241	٨
	5'-GGGTCAGCAGGTTCGTTTTTG-3'	Exon 18	D2	241	А
	5'-CATCTCAGGAATGTTCAGACACAGTAAC-3'	Exon 25	C1	200	٨
Muc19	5'-CAGGGCAGAGGTTTGGCTTTC-3'	Exons 26/27	CI	200	A A
(NM_207243)	5'-GATTATGCGATTGGTTCATCCT-3'	Exons 39/40	C^{2}	240	А
	5'-GTGCAATGTCCCTGAACTCATA-3'	Exon 43	C2	549	
LOC667753	5'-TGCGTCTGCGAGGAAAGTTG-3'	Exon 1	D1 1/3		D
(XM_992195)	5'-GCGACACCTATGACACCAATCAG-3'	Exon 1	DI	175	D
	5'-GCCAGCCCATTTCCAGTTTAC-3'	Exon 4	E1	378	р
Cntn1	5'-GCCGTTGGTCTGAGACACAAATC-3'	Exon 7	EI	578	D
(NM_007727)	5'-CCAATCAATGCTGACATCACTGTTG-3'	Exon 14	БJ	405	р
	5'-CGTCTTGGTCTGGATCGTGTATTTAG-3'	Exon 16	ΕZ	403	Б
AV025742	5'-GATGTAGGCAGGGGGACTGATAGTTC-3'	Exon 1	Е1	200	C
AK055742	5'-CCCTAACGGTGTTGATAATGCTCC-3'	Exon 3	ГІ	399	C
AV012767	5'-GCCTCCTTTGTCTTGTTTGCTGAC-3'	Exon 1	C1	212	р
AK013/0/	5'-GGAGATTGATGCTTTCTTTTGGC-3'	Exon 1	01	312	Б
AV085067	5'-GCAAGAGCGAAAATGGCAAAAC-3'	Exon 1	Ш1	272	р
AK083007	5'-TCCCAGGCACTAAACCACCAAC-3'	Exon 1	пі	212	D
	5'-CACCTAGAAGGGTGTGAACACGG-3'	Exon 1			
BB776065	5'-GGAGGCTGTGGGGCTTCATATTG-3'	Exon 1	I1	309	В

Table 3 S continued

	5'-TCTGGTTGTCGCCTGCTGTC-3' Exon 1 11 21				
	5'-TCCTATTATGTTGAATCCCAAAGTGTC-3'	Exon 3	JI	212	В
	5'-CCGTTCACTGTTGTGTTGGAAAG-3'	Exon 3	12	107	р
	5'-GCCTTACCGCAATGATTTTGTC-3'	Exon 4	JZ	18/	В
	5'-GAGCCCATAGTGGTACAGGTGTTAAG-3'	Exon 5	12	247	п
Pdzrn4	5'-AGACGTACTCATGGTCTTCATAAAACC-3'	Exon 6	13	247	В
(XM_992218)	5'-AAGAAGACACGGGCATTTATG-3'	Exon 7	14	256	C
	5'-CATTCATTCACGAACTTGGTG-3'	Exon 9	J4	230	C
	5'-GCAAGGAGGAGAGAAAGCAACAC-3'	Exon 11	15	277	р
	5'-GTCACCGACAGAAAGGCATTATG-3'	Exon 11	12	211	D
	5'-TGAAGCAGCACCCCTTGAAC-3	Exon 11	16	220	р
	5'-CCGTGGGCAAAGAAAATAACAGTC-3'	Exon 11	10	220	В
A 120 40 10 4	5'-CATTGGTTGCCAGAAACTACACTG-3'	Exon 3	V 1	D	
AK048184	5'-TCAGGTGACCATCCAACAGCAC-3'	Exon 3	NI.	323	Б
AV049652	5'-GAGTCTCTGTGTTGGCAAATGAATC-3'	TGTGTTGGCAAATGAATC-3' Exon 1		216	П
AK048032	5'-TTGTGGGAGGCACTGGGTAGATGAAC-3'	Exon 1	LI	210	в
A V 127952	5'-GGCTAGACGGTGACAAGGCAATC-3'	M1	222	п	
AK13/832	5'-ATGGAACATGGAACTCCCTGAAG-3'	Exon 1	IVI I	233	В
A V 001600	5'-GACGCTCTCTCCTGGATTCTGTAG-3'	Exon 1	N1	222	П
AK001009	5'-AAGTCGGCTTCTGGCAACACAC-3'	Exon 1	1 1 1	233	В
A V 0 4 7 9 2 5	5'- TGAAGGCTGGCTGGAAGATG -3'	Exon 1	01	174	П
AK047823	5'- TGGTTGTTGGAAGAGGAGGTGG -3'	Exon 1	01	1/4	Б
AV016267	5'-GCAGAAGGAATGAGAATGGACATC-3'	Exon 1	D1	122	D
AK016367	5'-AGTTGGCTTTTGCTGTGCTGAC-3'	Exon 1	r1	122	D

Table 4S. *Muc19* cDNA clones. Overlapping clones cover sequence from exon 1 to the 5'-end of exon 50. Clones from the 3'-end of exon 50 to each of two polyadenylation sites were produced by 3'-RLM RACE. PCR cycling profiles for 5'-end clones were: 95°C for 15 min followed by 40 cycles (94°C, 1 min; 55°C, 1 min; 72°C, 1 min) and a final 10 min extension at 72°C. PCR cycling profiles for 3'-end clones were: 94°C for 3 min followed by 35 cycles (94°C, 1 min; 66°C, 1 min; 72°C, 1 min) and a final 2 min extension at 72°C.

Mouse Strain	Forward/Reverse Primers	Sequence Length (bp)	Included Exons	GenBank Accession Number
sld	5'-GCCTGAACAGTCTCTACACTTAGG-3' 5'-TCTGCTTGCATGTACGAAGAG-3'	1,526	1, 19-31	HM132022
sld	5'-TGAACACTGGCGAGATGACTC-3' 5'-CTTGGGTCCAGGATAACTGATAC-3'	2,094	25-41	HM132023
NCR & <i>sld</i>	5'-CGAGACCGAAGCTGTGATATAG-3' 5'-GGTGATGTGTGCTTGTGCTTTAC-3'	1,797	36-50	HM132024
NCR & <i>sld</i>	5'-CCTCATCTTTCATTTCCCCATCTG-3' 5'-GCGAGCACAGAATTAATACGACT-3'	974	50-60	HM132025
NCR & sld	5'-CCTCATCTTTCATTTCCCCATCTG-3' 5'-GCGAGCACAGAATTAATACGACT-3'	1,079	50-60	HM132026

Table 5S. Genomic clones within the *Muc19/Smgc* locus. Clones were prepared from both NFS/NCr and NFS/N-*sld* DNA. Sequences of clones from both mouse strains were identical using primer sets 1-10, whereas clones from primers sets 11-14 contain variations between the two strains. Typically 25 ng of genomic DNA was amplified with 1 Unit of AccuprimeTM *Taq* high fidelity DNA polymerase using 0.25 μ M primers and a cycling profile of 95°C for 5 min followed by 35 cycles (95°C, 60 sec; 55°C 60 sec; 68°C, 2-10 min) and 7 min extension at 68°C.

Primer Set	GenBank Accession Number	Mouse Strain	Forward/Reverse Primers	Binding Site	Size (kb)
1	HM132005	NCr &	5'-GGTGCATCTCTCTTGCAGCTTTC-3'	5' Flank	7 762
1	1111152005	sld	5'-GTGACGATCTGGGACCTAAGTGTAG-3'	Exon 1	7,702
2	HM132006	NCr &	5'-ATTGCCTTTGCCTTGCTGCG-3'	5' Flank	6 670
2	1111132000	sld	5'-TGGTCCAGGTCCCTTGTCTC-3'	Intron 5	Size (kb) 7,762 6,670 3,080 3,481 4,469 2,070 1,110 4,200 3,594 3,675 5,559 5,563 1,763 3,273 3,277 6,486 6,488
3	HM132007	NCr &	5'-GCTAGGGAATACACACTGTAG-3'	Intron 4	3 080
5	1111132007	sld	5'-TGGTCCATGATCCTCTGTC-3'	Exon 7	5,000
4	HM132008	NCr &	5'-GGATCATGGACCAACAAG-3'	Exon 7	3 481
4	1111132008	sld	5'-GCTTTAAGATTCTCGACAGC-3'	Exon 10	5,401
5	HM132000	NCr &	5'-GGACAGAACTTGTGTCTTC-3'	Intron 9	1 160
5	1111132009	sld	5'-GTGACAGACTGTTGAATGTG-3'	Exon 13	4,409
6	UM122010	NCr &	5'-AAGAGAGGCAAAGAATCAGG-3'	Intron 12	- 3,481 - 4,469 - 2,070 - 1,110 - 4,200 - 3,594 - 3,675 - 5,559
0	1111132010	sld	5'-CTCACAAAGACTGATTCGGTAG-3'	Intron 13	2,070
7	HM122011	NCr &	5'-AAGGATGGATCTAGGTTAGGTG-3'	Intron 13	Size (kb) 7,762 6,670 3,080 3,481 4,469 2,070 1,110 4,200 3,594 3,675 5,559 5,563 1,763 3,273 3,277 6,486 6,488
/	HIVI132011	sld	5'-GGAGAGAGTATGCTCAGAACTTGATG-3'	Intron 14	
0	UM122012	NCr &	5'-GAATGGCAGAAGGCATTTG-3'	Intron 14	4,200
0	11101132012	sld	5'-CCCAAAGATGAAGACCAAC-3'	Exon 18	4,200
0	UM122012	NCr &	5'-TAGTGGCAGAGTTACCTGTCCTACTG-3'	Exon 18	$\frac{4}{3}$ 4,200 3,594 $\frac{3}{3}$ 3,675
9	HIVI132013	sld	5'-TGGCGGGCTTAACAATAGACTAGC-3'	Intron 18	
10	UM122014	NCr &	5'-CAGTGGTTGAATAGCCAGGAACAG-3'	Intron 18	3 675
10	HIVI132014	sld	5'-AGAGGGATACCTTTGGAAGCACAG-3'	Intron 18	5,075
11	UM122015	NCr	5'-GCTTCCAAAGGTATCCCTCTTAGTGAAGAC-3'	Intron 18	5 5 5 0
11	HW1152015	INCI	5'-GCCACAGACAAGCATTGAAACTGGACTATC-3'	Intron 21	5,559
11	UM122016	ald	5'-GCTTCCAAAGGTATCCCTCTTAGTGAAGAC-3'	Intron 18	5 562
11	HIVI132010	sia	5'-GCCACAGACAAGCATTGAAACTGGACTATC-3'	Intron 21	(kb) 7,762 6,670 3,080 3,481 4,469 2,070 1,110 4,200 3,594 3,675 5,559 5,563 1,763 3,273 3,277 6,486 6,488
12	UM122017	NCr &	5'-GGGCATTGATCCTGGAATCATCTA-3'	Intron 51	1 762
12	HIVI132017	sld	5'-CCTGGAGTGACTGCAGATACCAAAT-3'	Intron 53	1,705
12	111/122019	NC.	5'-TTAAAGCATCTGGGAGGGATGGAAC-3'	Intron 52	2 272
15	HIVI132018	INCI	5'-TGCAAAGATCAGACTGAAAATCGAG-3'	Intron 56	3,080 3,481 4,469 2,070 1,110 4,200 3,594 3,675 5,559 5,563 1,763 3,273 3,277 6,486
12	UM122010	ald	5'-TTAAAGCATCTGGGAGGGATGGAAC-3'	Intron 52	2 277
15	HIVI152019	sia	5'-TGCAAAGATCAGACTGAAAATCGAG-3'	Intron 56	5,277
14	UM122020	NC.	5'-GCCTCACATAAAAAGCAACACGAC -3'	Intron 56	6 196
14	FIVI152020	INCI	5'-GACCCATAACCTCTAAAAGTGGTGC-3'	3' Flank	0,480
1.4	UN(122021	ald	5'-GCCTCACATAAAAAGCAACACGAC -3'	Intron 56	6 100
14	F11VI132021	sia	5'-GACCCATAACCTCTAAAAGTGGTGC-3'	3' Flank	0,488

Table 6S. Primer pairs used to PCR amplify genomic DNA from NFS/NCr and NFS/N-*sld* mice for direct sequence comparisons. Amplicons of the appropriate molecular weight were isolated and sequenced directly. Sequences of amplicons from both mouse strains were identical for each primer set. PCR reactions incorporated 25 ng genomic DNA, 1 Unit of AccuprimeTM *Taq* high fidelity DNA polymerase and 0.25 μ M primers with a cycling profile of 95°C for 5 min, 35 cycles (95°C, 60 sec; 55°C, 60 sec; 68°C, 2-6 min) and 5 min extension at 68°C.

Primer Set	Forward/Reverse Primers	Binding Site	Size (kb)	
1	5'-CGAAGTCCCACTACGACTAGAACAC-3'	Exon 19	2 770	
1	5'-GAGAGTTTGTCCTTGCTCCACTTTAG-3'	Exon 22	2,779	
2	5'-GCAAGGCAACCACTATTC-3'	Exon 22	1 460	
2	5'-AAGGGCTGGGGCAGTCATTG-3'	Exon 24	1,460	
2	5'-TGAGCATATTGCCAGTAGTAAG-3'	Exon 24	2 211	
3	5'-CAAACCACAGCAGAGTCATC-3'	Exon 25	3,211	
4	5'-GCAGACTACGTGTGATACCTAC-3'	Exon 25	1 400	
4	5'-GGACTTTTCCTGGCTTGTAC-3'	Exon 28	1,408	
5	5'-ACATTGGAGAGAAAGGAAAG-3'	Exon 27	1 746	
5	5'-AGCCAAGAAGTGGCAGTC-3'	Exon 27	1,/40	
(5'-GGTCTTGCACTGAAGCTCGATG-3'	Exon 28	3,336	
6	5'-CTCCATCCTTTGTGACTGTC-3'	Exon 30		
7	5'-AGGAGTTGGTTCTGTGAATGGAAG-3'	Intron 29	3,290	
/	5'-GTGTACTTCAGACAGTTCTGCCTCC-3'	Intron 32		
0	5'-AACACAGCCAATCCCCTTGC-3'	Intron 32	3,760	
8	5'-AACTTTTCTCTTGCCCCACTTAGG-3'	Intron 35		
0	5'-ACAGCAGATTGCACAGACGTTTC-3'	Exon 35	4.007	
9	5'-CCATGACAGAAGTCAGCAGAGTTG-3'	Intron 39	4,827	
10	5'-AATCAACTTGCCATGTCTACGGAG-3'	Exon 39	4 4 4 4	
10	5'-TGACACCAGGATAACTCACACGTTC-3'	Intron 41	4,444	
11	5'-ATCACAGCAATGGTAACCCTGG-3'	Intron 41	5.020	
11	5'-CTTAGTTCAACCCGATGGAAACC-3'	Intron 48	5,938	
10	5'-GAGTCCTGCATCCAATCTGTTAGTC-3'	Intron 48	4 000	
12	5'-AGCTGAGGTCTCATTAGAGGCTGC-3'	Exon 50	4,089	
1.2	5'-CCTCGTCCAGTGTGTCATCTAC-3'	Exon 50	4.000	
13	5'-GCAGGAATCATGTATGCAGTG-3'	Intron 50	4,980	
1.4	5'-AGACTGAGCCCCCGATTC-3'	Intron 50	(117	
14	5'-TCTAAAAGCCAGAAGGGTC-3'	Intron 51	0,11/	
15	5'-CCTCTTTGTTTTCCGACTG-3'	Intron 51	4 001	
15	5'-TTGTGACTCCAGGTGCTAC-3'	Exon 52	4,981	

Table 7S. Primers and PCR conditions used in the production and genotyping of Muc19 KO mice. The produce homology arms and to screen ES cells and F1 mice (outside 3'-arm primer set) we used AccuprimeTM High fidelity Taq DNA polymerase with PCR cycling profiles of 94°C for 2 min followed by 30-35 cycles (94°C, 1 min; 55-58°C, 1 min; 68°C, 5-13 min) and 10-20 min at 68°C.

To produce Southern probe templates, PCR reactions were run in Taq PCR Master Mix (Qiagen) for 3 min at 98°C followed by 35 cycles (94°C, 30 s; 60°C, 30 s; 74°C, 30 s) and 3 min at 72°C. PCR reactions to genotype KO mice were run in the FailSafe PCR buffer system (Epicentre). Conditions were: buffer B; 3 min at 94 °C followed by 30 cycles (94°C, 30 s; 55°C, 30 s; 72°C, 90 s) and 5 min at 72°C. The his3-dedl Region is within the STOP cassette from pBS302.

Primers to Produce Homology Arms						
Location	Forward/Reverse Primers	Product Size (bp)				
5° A 1995	5'-GGACCCATTTGATTGCCTCG-3'	5 (02				
5 -Arm	5'-GCTTCTGAGTATGTGGGAGTCGC-3'	5,095				
22 4	5'-GCCCTTTGAGCAGGAGCAATG-3'	4 200				
3 -Arm	5'-CGAGTGTAAGTGTGCCCTGAAGTTG-3'	4,390				
Primers to Screen ES Cells and F1 Mice						
934 bp 5' of 5'-Arm	5'-TGAGGCATCTCAAGGGTAGC-3'	5.077				
Within PGK Promoter	5'-TTCCTGACTAGGGGAGGAGTAG-3'	5,977				
Within neo	5'-TCGGCTATGACTGGGCACAACAGAC-3'	5 029				
84 bp 3' of 3'-Arm	5'-TGGAGCACGTTGGAGGATTTGAAG-3'	5,028				
	Primers to Produce Southern Probes					
Dun II Droho	5'-TGCCATCTCTAATAGTTTCAGTGC-3'	209				
PVU II PIODe	5'-CTCTTGAAGGGGACACCCTAAACC-3'	308				
Sup I Drobo	5'-TTCGCGATTCACAAGTGTGCATG-3'	222				
Spil i Piobe	5'-GCACATTAATTAGCTTGGAGCAC-3'	332				
· · · · · · · · · · · · · · · · · · ·						
Primer Set to Genotype KO Mice						
Intron 24-Deleted Region	For: 5'-CAGACCCCTGAGGACATTCTTG-3'	500 (Wild Type)				
In his3-dedl Region	For: 5'-TGAGGAGGAACATAACCATTCTCG-3'	1.262 (Muo10 KO)				
In 3'-arm	Rev: 5'-GGCTTGGAGTGACAGTTTGGATAC-3'	1,203 (WIUC19 KU)				

Table 8S. TaqMan gene expression assays. Standard assays used for evaluating transcripts in the critical interval are given, as well as a custom assay to detect *Muc19* heteronuclear RNA. In all cases, assays were performed in triplicate. Site, assay location along transcript (GenBank Accession Number in parentheses); context sequence, target sequence where TaqMan probe hybridizes (see https://products.appliedbiosystems.com/ for more information); Exons, exons in which the primers bind; Amp, amplicon length in base pairs; *Lrrk2*, leucine-rich repeat kinase 2; *Muc19*, mucin 19; *Smgc*, submandibular gland protein C; *Cntn1*, contactin 1; *Actb*, beta actin; *Hprt1*, hypoxanthine guanine phosphoribosyl transferase 1; *Rn18s*, 18S ribosomal RNA.

Standard TaqMan Assays							
Transcript	Assay ID	Exons	Site	Context Sequence	Amp		
<i>Muc19</i> (NM_207243)	Mm01306462_m1	51-52	21,866	5'-ACCAGTATGCCAGCTTCCACCTCGG-3'	82		
<i>Smgc</i> (NM_198927)	Mm01303795_g1	17-18	2,091	5'-GTGACTCAGGAAGCCATAATTTGTC-3'	93		
<i>Lrrk2</i> (NM_025730)	Mm00481934_m1	47-48	7,027	5'-AAAACCAACCAGCTGTTTTCTTACG-3'	88		
<i>Cntn1</i> (NM_007727)	Mm00514374_m1	23-24	3,233	5'-AAGTCAAAATTTCAGGCGTGTCCAC-3'	64		
<i>Actb</i> (NM_007393)	Mm00607939_s1	6-6	1,230	5'-TACTGAGCTGCGTTTTACACCCTTT-3'	115		
<i>Hprt1</i> (NM_013556)	Mm00446968_m1	6-7	630	5'-GTTAAGGTTGCAAGCTTGCTGGTGA-3'	65		
<i>B2m</i> (NM_009735)	Mm00437762_m1	1-2	117	5'-GTATGCTATCCAGAAAACCCCTCAA-3'	77		
<i>Rn18s</i> (NR 003278)	Hs99999901_s1	1-1	609	5'-TGGAGGGCAAGTCTGGTGCCAGCAG-3'	187		

Custom TaqMan Assay to <i>Muc19</i> Heteronuclear RNA						
Assay ID	Location	Context Sequence	Amp			
MUC19HNRNA-MU19	Intron 19 - Exon 20	5'-TCAACACAAGAGAGAAATAA-3'	93			
Forward Primer 5'-CCTTGGGAATACAATTTGAATCAATGCA-3'						
Reverse Primer	Reverse Primer 5'-GCTTCTGGAACATGGGATGCTT-3'					

Primers to Prepare Standard Templates for each TaqMan Assay				
Transcript	Forward/Reverse Primers			
Muello	5'-TTCATTTCCCCATCTGGACATC-3'			
Muc19	5'-GTCTGGACACTCTGGCTGAGATATG-3'			
Smaa	5'-TAATGCACAATCAAGCAACAAC-3'			
Smgc	5'-AATTATGGCTTCCTGAGTCACTC-3'			
I untr?	5'-AGGGTGTGGCACAAAGGTCTTC-3'			
LITK2	5'-TGGCAATATACAGGGCTGTGTCTAC-3'			
Cratral	5'-CGAGTAGACAAGAAAGCCAAGGGAG-3'			
Chini	5'-TTCCGAGTAGACAAGAAAGCCAAG-3'			
Aath	5'-GGCTGCTTTGCTTTCAGTTTTGTAG-3'			
ACID	5'-CCCAGTTACTAAGTGGTTTTTTTGCTTG-3'			
I Inut 1	5'-TGGAAAGAATGTCTTGATTG-3'			
Пртії	5'-CTTGTCTGGAATTTCAAATC-3'			
D., 19a	5'-ACGGCTACCACATCCAAGGAAG-3'			
RNIOS	5'-GGACACTCAGCTAAGAGCATCGAG-3'			
Muclo haPNA	5'-GGAACACGACATTTAGCGTCTCAC-3'			
MUCIY NNKNA	5'-CTGGAACATGGGATGCTTTTTC-3'			

Table 9S. Primer pairs to create minigenes and for detecting spliced and unspliced products from minigenes and in sublingual glands. PCR reactions to create minigenes incorporated 25 ng genomic DNA, 1 Unit of Accuprime *Taq* high fidelity DNA polymerase and 0.25 μ M primers with a cycling profile of 95°C for 5 min, 35 cycles (95°C, 60 sec; 55°C, 60 sec; 68°C, 2 min) and 2 min final extension at 68°C.

PCR reactions to detect splicing products used random-primed cDNA (5 ng or more) as template and 1 Unit of Accuprime *Taq* high fidelity DNA polymerase and 0.25 μ M primers. Cycling profiles were 94C for 5 min followed by 25-30 cycles (94°C, 1 min; 60-62°C, 3 min; 68°C, 1 min) with 5 min final extension at 68°C.

To detect neo and β -actin cDNA we used a cycling profile of 94°C for 3 min followed by 30 cycles (94°C, 30 sec; 56°C 30 sec; 68°C, 2 min) with no final extension.

Cycling conditions for SYBR Green qPCR assays (20 μ l reactions) for correctly and aberrantly spliced *Muc19* transcripts using primers F4/R4 and F5/R5, respectively, and *Actb* primers (endogenous control) were 95°C for 10 min followed by 40 cycles (95°C, 15 sec; 60°C, 1 min; 68°C, 1 min). These same primers were used to prepare standard templates for quantification of copy numbers per reaction.

Primer pairs to create minigenes					
Genomic Location	Forward/Reverse Primers				
Intron 52	5'-ACCTTGAGAGGCTAACCTGTGTT-3'				
Intron 55	5'-CGTATTTAGTTCATCTGGTGTGTTACA-3'				
Intron 56	5'-CCCCACTTAACTTGCAGATT-3'				
Intron 58	5'-TATTTTTCTATATACAGAAGTCAACTTACA-3'				

Primers for PCR of cDNA from expressed minigenes and in sublingual glands		
Primer ID	Genomic Location	Forward/Reverse Primers
F1	Exon 2	5'-GAGTTCTGGTGGGAGCAAAGATTAC-3'
R1	EGFP	5'-ACGTTGTGGCTGTTGTAGTTGTACTC-3'
F2	Exon 57	5'-GGTTCATCCTTTGATGACCCAAG-3'
R2	Exon 58	5'-TTATTTGAATCGTAGATTCTCTCTC-3'
F3	Exon 53	5'-GTGTCCAGACTCACTCCCACCAAC-3'
R3	Exon 55	5'-TTTTTCGGTACAGGTACACTGATG-3'
F4	Exons 51/52	5'-GAACCACCAGTATGCCAGCTT-3'
R4	Exons 55/54	5'-TACGTCCCCAGGAGATTTCTCT-3'
F5	Exons 50/51	5'-CCTTCAGTCATTAAAACAGGAGGGACGACT-3'
R5	Intron 54/Exon 54	5'-GAGAGACCAGAACTGCATGCTTACAGATTTCT-3'
F6	Exon 1	5'-GATCGTCACCATGAAGCTGATA-3'
R6	Exons 22/21	5'- GTGGCTATAAAGAATGAGTGAGAGT-3'
Neo-F	neo	5'-GATCTGGACGAAGAGCATCAG-3'
Neo-R	neo	5'-CCATGATATTCGGCAAGCAG-3'
β-actin-F	Actb Exon 1	5'-GAGCACAGCTTCTTTGCAGCTC-3'
β-actin-R	Actb Exon 3	5'-CACCCACATAGGAGTCCTTCTGAC-3'