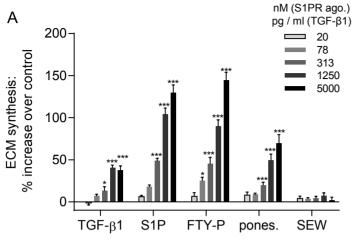
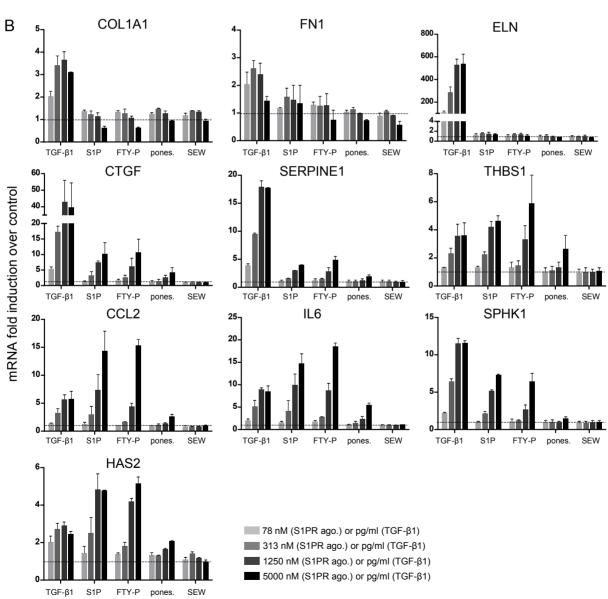
CIDD		7	1		C1	
-SIPRI	aoonist	selectivit	v and	nro-	tihratic	notentia
	$x \leq O \cap i \cup i \cup i$	BULULIVIE	unia	$\rho i \circ i$	ioi ouc	poicilia

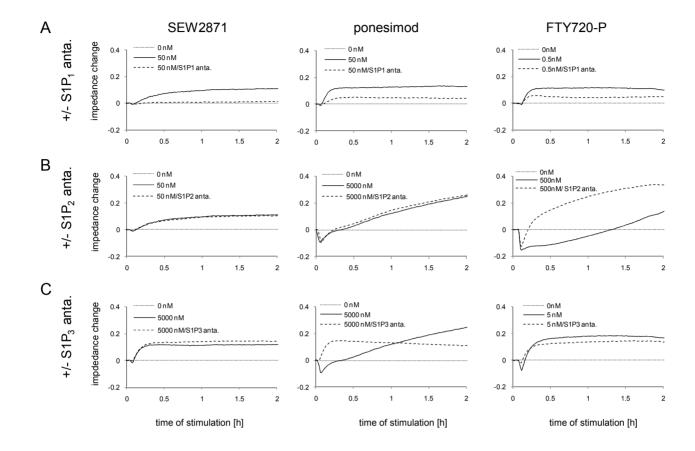
Sphingosine-1-phosphate (S1P) receptor agonists mediate pro-fibrotic responses in normal human lung fibroblasts via $S1P_2$ and $S1P_3$ receptors and Smad-independent signaling


Supplemental Information


Katrin Sobel, Katalin Menyhart, Nina Killer, Bérengère Renault, Yasmina Bauer, Rolf Studer, Beat Steiner, Martin H. Bolli, Oliver Nayler and John Gatfield

Supplementary Figure 1

TGF-β1


pones.

Suppl. Fig. 1: Analysis of ECM synthesis and regulation of pro-fibrotic gene expression in NHLF isolated from a second, independent donor

- (A) NHLF were stimulated with TGF- β 1 (20-5000 pg/ml) or S1PR agonists (20-5000 nM) and ECM synthesis was measured after 24 h with the ³H-proline incorporation assay. Data represent mean + SEM of 5 independent experiments, * = p< 0.05, *** = p < 0.001, one-way ANOVA, Dunnett post test. (B) qPCR of pro-fibrotic gene expression after stimulation of NHLF with TGF- β 1 (78-5000 pg/ml) or S1PR agonists (78-5000 nM) for 8 h. Normalization was performed using B2M, HPRT1, 18s and PPIA, which were selected by GENORM application (1). Data are mean + SEM of two independent experiments. Dashed lines show the control level of gene expression.
- (1) Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biol* **3**, RESEARCH0034.

Suppl. Fig. 2 Analysis of S1PR subtype signaling in NHLF using impedance assays NHLF were pre-incubated with or without 1 μ M S1P₁R antagonist W146 (A), 0.2 μ M S1P₂R antagonist JTE-013 (B) or 1.25 μ M S1P₃R antagonist TY-52156 (C) for 1 h before stimulation with various concentrations of SEW2871, ponesimod or FTY720-P. Signaling was monitored over 2 h. Data in A, B show representative experiments, n=3.

- (A) The S1P₁R antagonist reduced the increase in impedance induced by SEW2871 (50 nM), ponesimod (50 nM) and FTY720-P (0.5 nM), confirming that the increase in impedance reflects the S1P₁R response.
- (B) Pre-incubation with the $S1P_2R$ antagonist did not affect SEW2871 (50nM)- and ponesimod (5 μ M)-induced impedance responses, demonstrating that no $S1P_2R$ activation was measurable. In contrast, the FTY720-P (500 nM)-induced prolonged decrease in impedance was completely reversed to increase above baseline in the presence of $S1P_2R$ antagonist, while the first, rapid decrease was unaffected. This demonstrates that the prolonged decrease in impedance represents $S1P_2R$ activation.
- (C) Pre-incubation with the $S1P_3R$ antagonist did not affect the SEW2871 (5 μ M)-induced increase in impedance. In contrast, the rapid ponesimod (5 μ M)-induced decrease was completely inhibited by the antagonist. Also the rapid decrease induced by 5 nM FTY720-P, a concentration that did not yet induce a $S1P_2$ response, was inhibited in presence of $S1P_3R$ antagonist. These data confirm that the first rapid decrease represents $S1P_3R$ activation.

 $\begin{tabular}{ll} Supplementary & Table 1 \\ List of TaqMan assays from Applied Biosystems that were used for mRNA detection. \\ \end{tabular}$

	Assay number			
Gene	(Applied			
	Biosystems)			
18S	4319413E			
B2M	4310886E			
CCL2	Hs00234140_m1			
COL1A1	Hs00164004_m1			
CTGF	Hs00170014_m1			
ELN	Hs00355783_m1			
FN1	Hs01565277_m1			
HAS2	Hs01052031_m1			
HPRT1	4326321E			
IL6	Hs00985639_m1			
PPIA	4326316E			
SERPINE1	Hs01126606_m1			
SPHK1	Hs00184211_m1			
$S1P_1$	Hs00173499_m1			
$S1P_2$	Hs00244677_s1			
S1P ₃	Hs00245464_s1			
S1P ₄	Hs02330084_s1			
S1P ₅	Hs00258220_s1			
THBS1	Hs00962908_m1			