

Fig. S1. Sequence analysis of mutations supported by DIVAC 2-3. Genomic DNA was isolated from (A) IgL(-)GFP2 2-3 and (B) IgL(-)GFP2 cell lines on day 21 post-subcloning. A 1217 bp region of the GFP2 expression cassette was PCR amplified, cloned, and sequenced. The pie chart shows the proportion of sequences containing the indicated number of mutations; the middle circle denotes the number of sequences analyzed. Mutation spectra are depicted in the box diagrams (left, sequences from this analysis; right, published data from (34)). Further information concerning the mutations and mutation frequencies are detailed below the mutation spectra.

Fig. S2. Analysis of DIVAC function associated with murine Ig light chain enhancers. (A) Schematic diagram of the murine Ig light chain enhancers. The sizes of the fragments containing the intronic Igk enhancer ($iE\kappa$), 3' Igk enhancer (3'Ek), Ig λ 2-4 enhancer (E λ 2-4), and Ig λ 3-1 enhancer (E λ 3-1), are indicated, as are the locations of E boxes conforming (closed symbols), or not conforming (open symbols) to the motif CASSTG. (B) Fluctuation analysis of GFP loss in subclones with data depicted as in Fig. 2D.

Fig. S3 A

AGCAGGCCGCATGGTACAGCTCCATCAGCACAGCTGGGCCACACAAAGAGCTGGGTTACTGTGGGCAGCAGGCT GAAACCCGAAAACAAGAGCTGGGGGCTCAGAATAGCCCCGGGAGCAGGGCAGGGCCTGGGGGGAGAGGGCAAGCAC CAGGCCCAGGGCCACACAGCCCTTCCAGGAAGGCACAGCGCTGTCAGGGTGCAGCACGCTCAGCCCCACCATGCA **GCTG**TGCGGCCCGGGGCATCCCCAAGCTAAATTTACTTCTCAGTCTCCAATCAGAAACTGAAGCTGAGGGGCCCACG CTGGGCACATGGGATGGGGTACACACGTACACACACTTGCACACCCCACACCCCAACACTTCAGGTGATGCTGGTGC AGATGGGTGCCCCCCAGGCTGACCCCGCTTGCAAAGAGGAGAGCATTTGCATGGCTGTGGCAAAACAGCAACCGCC TGTTGTGCAGCTGGGATGGTGTTATCTGGAAATGTACGCAGCCCAGGAGGGGTAAACAGCTCCAAACTGAGACCCT GAGCTTGTCCACAGGTTGTAAACAGGCTGACATAAACACCTTTGTGCCGTGGAAAAATATTTATCACCTCAAATATAG CAGGTTAATAAAATAAAACTCCCCAACGGAGCTTCACACCTGCTTTGGAAGGGAAGCAGACACTTGTTTTCTGCTTGAT GTTGGCTGTAGGAAGCCATGTTTCCCGATGCAGGAGGGCCACAAAGCACTGACAACACAATGTGAGCTGAGCTTCG CCCCTGTTTAAGCCCCCACCACAGGGCTTGTGGCCCTAGAGCAGACAGGGCGCAGGGGTGGCACCGGGCTGGGTG ACATGGGCTGGTCCTGGGGTGTCTCACTGAGCTCTTTGGGGAGGGGTTGGAGCCCTGGGGCAATCACAGCACAC AGGAGGTGGGGGGGATGCAGCCAGCAGCTGCCCTGCACTAAGAAAACCCCCATCCGTGGGCTTTCAGATGGCCTTCC CATCTCTCTGCAGCCTCTGCATGGGCTGAGCACAAGGTTTAAGTGTTTCTGCCATGTTTTTGGGCATGTTTGGAGGG GCAGCGTGGGCCCGGGCATACGGGTACCGCCACGTGCTGCCAGCCCCACAGCTGAGCCTGCACTCTCCCAGATGT GCTGACCGCAGCCACGGGGGGCAACAGTTTCTCTTGCTAAAAATTGTAGCCGGGAAGAAAACACGTGGCAACTTCGG CCAAACAGCAGCTGGAGGACAGGAATAGCCGTGGCCACGGCACGCTCTGCTTCCTCGGCACAAACATTCCAGTACG TGGCACCACGAGCGCCGCTGCCCGGCACAGCAGCAGCAGGAGCCAGGAGCAGGAAATGCTGATTTGGGCCCCATT TTGGCCATGGCTGAGAGAGAGGGCTTCCAGGGAGCTGGTCAGCTTGGTCCCCAAGCTGTGGCTTGGGGAAATGATG GGGAGGGGATTGCCACTGCCACCCTGCAGAGCAGGCTCTGGTCCCATCTCACTGCAGGGCACCAGGGCGTTTGC ACTGCAGCAATTCACAGAAACATTGAAATGGCTCCT

В

AACATCCCACCAGCACGGGGGCTCAGCACGCCTGGCGACGTGGCATCAGCAGAGCAGGCCGCATGGTACAGCTC CATCAGCACAGCTGGGGCCACACAAAGAGCTGGGTTACTGTGGGCAGCAGGCTGAAACCCGAAAACAAGAGCTGG GGGCTCAGAATAGCCCCGGGAGCAGGCCAGGGCCTGGGGGGAGAGGGCAAGCACCAGGCCCAGGGCCACACAGCCC TTCCAGGAAGGCACAGCGCTGTCAGGGTGCAGCACGCTCAGCCCCACCATGCAGCTGTGCGGCCGGGGCATCCCC AAGCTAAATTTACTTCTCAGTCTCCAATCAGAAACTGAAGCTGAGGGGCCCACGCCGGCCAAAAAAAGGAAACGAAA CACGTACACACACTTGCACACCCCACACCCCAACACTTCAGGTGCTGGTGCAGATGGGTGCCCCCCAGGCTGAC CCCCCCACGCATGGGCCTGGCCCCACACTGCTCCATCCGTGTCTCTGACTAGCGGCGGAGCCCCAGCTGTAGGAA CCACCTGACCGAAACAGCCCGCTTGCAAAGAGGAGAGAGCATTTGCATGGCTGTGGCAAAACAGCAACCGCCTGTTGT GCAGCTGGGATGGTGTTATCTGGAAATGTACGCAGCCCAGGAGGGGTAAACAGCTCCAAACTGAGACCCTGAGCTT GTCCACAGGTTGTAAACAGGCTGACATAAACACCTTTGTGCCGTGGAAAAATATTTATCACCTCAAATATAGCAGGTT AATAAAATAAAACTCCCCAACGGAGCTTCACACCTGCTTTGGAAGGGAAGCAGACACTTGTTTTCTGCTTGATGTTGGC TGTAGGAAGCCATGTTTCCCGATGCAGGAGGGCCACAAAGCACTGACAACACAATGTGAGCTGAGCTTCGCCCCTG TTTAAGCCCCCACCACAGGGCTTGTGGCCCTAGAGCAGACAGGGCGCAGGGGTGGCACCGGGCTGGGTGACATGG GCTGGTCCTGGGGTGTCTCACTGAGCTCTTTGGGGGAGGGGTTGGAGCCCTGGGGCAATCACAGCACACAGAGG AGGTGGGGGGGATGCAGCCAGCAGCTGCCCTGCACTAAGAAAACCCCATCCGTGGGCTTTCAGATGGCCTTCCCATC TCTCTGCAGCCTCTGCATGGGCTGAGCACAAGGTTTAAGTGTTTCTGCCATGTTTTGGGCATGTTTGGAGGGGCAG CGTGGGCCCGGGCATACGGGTACCGCCACGTGCTGCCAGCCCCACAGCTGAGCCTGCACTCTCCCCAGATGTGCTG ACCGCAGCCACGGGGGCAACAGTTTCTCTTGCTAAAAATTGTAGCCGGGAAGAAAACACGTGGCAACTTCGGCCAA ACAGCAGCTGGAGGACAGGAATAGCCGTGGCCACGGCACGCTCTGCTTCCTCGGCACAAACATTCCAGTACGTGGC ACCACGAGCGCCGCTGCCCGGCACAGCAGCAGCAGGAGCCAGGAGCAGGAAATGCTGATTTGGGCCCCATTTTGG CCATGGCTGAGAGAGAGGCTTCCAGGGAGCTGGTCAGCTTGGTCCCCAAGCTGTGGCTTGGGGAAATGATGGGG AGGGGATTGCCACTGCCACCCTGCAGAGCAGGCTCTGGTCCCATCTCACTGCAGGGCACCAGGGCGTTTGCACTG CAGCAATTCACAGAAACATTGAAATGGCTCCT

Fig. S3. Sequences of key DIVAC fragments. (A) DIVAC 1703. (B) DIVAC 1928. In both, the F2 core is the 5' underlined section and the F3 core is 3' underlined section. E boxes are indicated in bold.

Table S1

Α

Construct Name	Primer Sequence	Template DNA	Product Size (bp)
1	F: cccgctagcctgggaacagggggggggttctg R: cccactagtccctgtggtcccgctgagt	1493	
2	F: cccgctagctgaggagcatgtgctgaatta R: cccactagtgggctgtttcggtcaggt	DT40 Genomic	1476
3	F: cccgctagcggcggagccccagctgtagg R: cccactagtgcggtgctccccaggatacca	DT40 Genomic	1633
2a	F: 2 F R: cccactagtctgctgatgccacgtc	2	590
2b	F: cccgctagcaacatcccaccagcacacg R: cccactagtcagagacacggatggagcagt	2	650
2c	F: cccgctagccccccaggctgacccc R: 2 R	2	350
2b-1	F: 2b F R: cccactagtgaagggctgtgtggccctgggcc	2	227
2b-2	F: cccgctagcagccccgggagcaggcagggcct R: cccactagtcaaagctcagtctggcaaagccc	2	316
2b-3	F: cccgctagcagagcgagcgccgcgcaaaccggc R: 2b R	2	244
1-3	F: 1 F R: 3 R	DT40 Genomic	4384
2-3	F: 2 F R: 3 R	DT40 Genomic	2989
2-3∆2a	F: 2b F R: 3 R	2-3	
2-3∆2c	F: 2 F R: 2b R	2-3 (added to 3)	2640
2-3∆2a/2c	Digested 2b vector and inserted into 3		2103
2-3∆N	F: 2 F 2-3 R: cccactagtacaagctcggggtctcagtttg		1610
2-3∆3'N	F: 2 F R: cccactagtaacatggcagaaacacttaaac	2-3	2118
2-3∆5'N	F1: 2 F R1: tccaaacatgcccaaagggctgtttcggtca F2: tgaccgaaacagccctttgggcatgtttgga R2: 3 R	2-3	2347
2-3∆CR1	F: 2 F R: cccactagtaggagccatttcaatgtttctgtga	actagtaggagccatttcaatgtttctgtga	
2b-2 ∆1-50	F: cccgctagcagccccgggagcaggcag R: 2b-2 R	2b-2	265
2b-2 Δ51-100	F1: 2b-2 F R1: ctgcatggtggggctgactgggcctggtgcttgcc F2: tcagccccaccatgcagc R2: 2b-2 R	266	
2b-2 Δ101-150	F1: 2b-2 F R1: ctgattggagactgagaaggcgtgctgcaccctgac F2: cccgctagccttctcagtctccaatca R2: 2b-2 R	2b-2	266
2b-2	F1: 2b-2 F	2b-2	265

Δ151-201	R1: actgtttcgtttcctttttaaatttagcttggggat			
	F2: cccgctagcaaaaggaaacgaaacagt			
	R2: 2b-2 R			
	F1: 2b-2 F			
20-2		2b-2	263	
Δ202-254				
2h-2	F: 2h-2 F			
Δ255-316	R: cccactagtgctcgctctgcttcacac	2b-2 253		
01-0454	F1: cccgctagctcagccccaccatgcagc	01-0	4 5 4	
20-2 154	R1: cccactagtgctcgctctgcttcacac	20-2	154	
20	F: 3 F	2	450	
за	R: cccactagttgtcagtgctttgtggccctc	3	456	
	F: cccgctagcccatgtttcccgatgcagg			
3h		3	471	
55	R: cccactagtgagaaactgttgcccccgtg	5	471	
_				
3c	R: cccactagtttgaacaaggcaggagccat	3	455	
24.5	F: cccgctagcccatgtttcccgatgcagg	2	000	
SΔd	R: 3 R	5	000	
	F1: 3 F			
3 4 h	R1: gctcagctgtggtgtcagtgctttg	3	1262	
ULD	F2: caaagcactgacaccacagctgagc	Ū	1202	
	R2: 3 R			
3a+b	F: 3 F	3	1216	
	R: 3b R			
303	F: 3c F	3	807	
000	R: 3 R	5	007	
DC	F1: cccgctagctcagccccaccatgcagc	14/	700	
PG	R1: cccactagttgttcagatggaacttcttatgttc	VV	700	
	F1: cccgctagcagcaggccgcatggtac			
DIVAC	R1: ctcctctttgcaagcggggtcagcctgggggg		1702	
1703	F2: ccccccaggctgaccccgcttgcaaagaggag	DIVAC 2-3	1705	
	R2: 2-3ΔCR1 R			
DIVAC	F: cccgctagccagcacgctcagccc		4500	
1703	R: 2-3ΔCR1 R	DIVAC 1703	1503	
Δ1-200	E1: DIVAC 1703 E1			
DIVAC	R1: tctggcaaagcccccaccctgacagcgctg			
1703	F2: cagcgctgtcagggtgggggctttgccagac	DIVAC 1703	1503	
Δ201-400	R2: 2-34CR1 R			
DIVAC	F1: DIVAC 1703 F1			
1703	R1: cagctgcacaacaggcaacctgaggtgtgtgacatg	DIVAC 1703	1503	
Δ401-600	F2: cacacacctcaggttgcctgttgtgcagct		1000	
	KZ: Z-3ΔUK1 K			
DIVAC	R1: ctacttecetteceagattactattttace			
1703	F2: ancaaaacancaacettanaaannaaanaa	DIVAC 1703	1503	
Δ601-800	R2: 2-3ACR1 R			
DIVAC	F1: DIVAC 1703 F1	DIVAC 1703	1503	

1703	R1: cagtgagacaccccaagcaggtgtgtagctc				
Δ801-1000	F2: gagctacacacctgcttggggtgtctcactg				
	R2: 2-3ΔCR1 R				
DIVAC	F1: DIVAC 1703 F1				
1703	R1: gcccctccaaacatgcggaccagcccatgtc	accagcccatgtc DIVAC 1703			
Δ1001-	F2: gacatgggctggtccgcatgtttggaggggc				
1200	R2: 2-3ΔCR1 R				
DIVAC	F1: DIVAC 1703 F1				
1703	R1: agcagagcgtgccgtgccaaaaacatggcag		1503		
Δ1201-	F2: ctgccatgtttttggcacggcacgctctgct	DIVAC 1100			
1400	R2: 2-3ΔCR1 R				
DIVAC					
1703	F: DIVAC 1703 F1		1400		
Δ1401-	R: cccactagtgccacggctattcct	DIVAC 1703	1400		
1703					
DIVAC	F: 2b F				
1928	R^{2} 2-3ACR1 R	2-3∆2a/2c	1928		
DIVAC					
1928		DIVAC 1928	1878		
Δ1					
	R2: 2-3ΔCR1 R				
DIVAC					
1928		DIVAC 1928	1878		
Δ2	F2: ggggcatccccaagcccggccaaaaaaaggaaac				
	R2: 2-3ΔCR1 R				
DIVAC	F1: 20 F				
1928	R1: ggcgctcgctctgctcgtgggcccctcagcttc	DIVAC 1928	1878		
Δ3	F2: gctgaggggcccacgagcagagcgagcgccgcg				
-	R2: 2-3ΔCR1 R				
DIVAC	F1: 20 F				
1928	R1: gtctggcaaagcccctcacacgtcagtgctttc	DIVAC 1928	1878		
Δ4					
	R2: 2-30UR1 R				
DIVAC	F1: 20 F				
1928	R1: cctgtgtgtgtgtgtggggaccagcccatgtcac	DIVAC 1928	1878		
Δ5	F2: acatgggctggtcccacagcacacaggagg				
	R2: 2-3ΔCR1 R				
DIVAC	F1: 20 F				
1928	R1: ggatggggttttcttattgccccagggctcca	DIVAC 1928	1878		
Δ6	F2: agccctggggcaataagaaaaccccatccgtg				
	R2: 2-3ΔCR1 R				
DIVAC	F1: 20 F				
1928	R1: ctcagcccatgcagaggagtgcagggcagctgctg	DIVAC 1928	1878		
Δ7	F2: cagctgccctgcactcctctgcatgggctgagcac				
	R2: 2-3ΔCR1 R				
DIVAC	F1: 20 F				
1928	R1: cccctccaaacatgcctgcagagagatgggaag	DIVAC 1928	1878		
Δ8	F2: cccatctctctgcaggcatgtttggaggggcag				
	R2: 2-3ΔCR1 R				
DIVAC	F1: 2b F				
1928	R1: tggggctggcggccaaaaacatggcagaaa	DIVAC 1928	1878		
۸۹ ۱۰۲	F2: ctgccatgtttttggccgccagcccacag		1010		
	R2: 2-3ΔCR1 R				
DIVAC	F1: 2b F		1879		
1928	R1: ctgttgcccccgtggcacgtggcggtacccgta	DIVAC 1920	1070		

Δ10	F2: gggtaccgccacgtgccacgggggcaacagtttc R2: 2-3ΔCR1 R					
DIVAC 1928 Δ11	F1: 2b F R1: tggccgaagttgccacgtctgcggtcagcacatctg F2: atgtgctgaccgcagacgtggcaacttcggcca R2: 2-3ΔCR1 R	1878				
DIVAC 1928 Δ12	F1: 2b F R1: gaagcagagcgtgccgtggttttcttcccggctac F2: gccgggaagaaaaccacggcacgctctgcttc R2: 2-3ΔCR1 R	b F jaagcagagcgtgccgtggttttcttcccggctac jccgggaagaaaaccacggcacgctctgcttc 2-3ΔCR1 R				
DIVAC 1928 Δ13	F1: 2b F R1: ccgggcagcggcgctgccacggctattcctgtc F2: aggaatagccgtggcagcgccgctgcccggcac R2: 2-3ΔCR1 R	1878				
DIVAC 1928 Δ14	F1: 2b F R1: aaatgggggcccaaatccgtggtgccacatactgg F2: gtatgtggcaccacggatttgggccccattttgg R2: 2-3ΔCR1 R					
DIVAC 1928 Δ15	F1: 2b F R1: tggggaccaagctgaccaagcatttcctgctcctgg F2: gagcaggaaatgcttggtcagcttggtcccca R2: 2-3ACR1 R					
DIVAC 1928 Δ16	F1: 2b F R1: gtgggcagtggcaagctccctggaagcctcttc F2: aggcttccagggagcttgccactgcccaccctg R2: 2-3ΔCR1 R					
DIVAC 1928 Δ17	F1: 2b F R1: caaacgccctggtgctcccctccccatcatttc F2: tgatggggagggggggcaccagggcgtttgcac R2: 2-3ΔCR1 R	accagggcgtttgcac DIVAC 1928				
DIVAC 1928 Δ18	F: 2b F R: cccactagtcctgcagtgagatgggac	DIVAC 1928	1878			
1-3 ΔF2 core	F1: 1 F R1: tctggcaaagcccccaccctgacagcgctg F2: cagcgctgtcagggtgggggctttgccagac R2: 3 R	DIVAC 1-3	4184			
1-3 ΔF3 core	F1: 1 F F2: cgggtaccgccacgtgttgccactgcccaccctgcag R1: ggtgggcagtggcaacacgtggcggtacccgtat R2: 3 R	DIVAC 1-3	4034			
1-3 ΔF2/F3 core	F1: 1 F R1: tctggcaaagcccccaccctgacagcgctg F2: cagcgctgtcagggtggggggctttgccagac R2: 3 R	DIVAC 1-3 ΔF3 core	3834			
2-3 ΔF2 core	F1: 2 F R1: totggcaaagcccccaccctgacagcgctg F2: cagcgctgtcagggtggggggctttgccagac R2: 3 R	DIVAC 2-3	2789			
2-3 ΔF3 core	F1: 2 F F2: cgggtaccgccacgtgttgccactgcccacctgcag R1: ggtgggcagtggcaacacgtggcggtacccgtat R2: 3 R	DIVAC 2-3	2639			
2-3 ΔF2/F3	F1: 2 F R1: tctggcaaagcccccaccctgacagcgctg	DIVAC 2-3 ΔF2	2439			

core	F2: cagcgctgtcagggtggggggctttgccagac R2: 3 R		
DIVAC 1928 ΔF2 core	F1: 2b F R1: tctggcaaagcccccaccctgacagcgctg F2: cagcgctgtcagggtggggggctttgccagac R2: 2-3ΔCR1 R	DIVAC 1928	1728
DIVAC 1928 Δ1201- 1400	F1: 2b F R1: agcagagcgtgccgtgccaaaaacatggcag F2: ctgccatgtttttggcacggcacgctctgct R2: 2-3ΔCR1 R	DIVAC 1928	1728
DIVAC 751	F1: cccgctagccagcacgctcagccc R1: gcccctccaaacatgcgtcagcctgggggggcacc F2: ggtgccccccaggctgacgcatgtttggaggggc R2: cccactagttcccctccccatcatttc	agccc agcctgggggggcacc catgtttggaggggc catttc	
Murine iEĸ	F: cccgctagccaaggaaagggtgacttatt R: cccactagtacacaagcacataaggtaaga	C57BL/6 Genomic DNA	1001
Murine З'Ек	F: cccgctagcagctcaaaccagcttaggctac R: cccactagttgtctgggccccatgaaacatc	C57BL/6 Genomic DNA	801
Murine Eλ2-4	F: cccgctagctggggatactcagtaatcttc R: cccactagttgctctacccaagttgct	C57BL/6 Genomic DNA	724
Murine Eλ3-1	F: cccgctagctctagtttccactatcatctc R: cccactagtcttactcctttgtgctct	C57BL/6 Genomic DNA	682

В

Gene	PCR Fragment	Primer	Та	Product Size (bp)
γ-actin		F: acagcattcgggtggagt R: ttgagcatcctccttcacac Probe: cctcagccctcacctgcacg	60	127
RSV Promoter (in IgLGFP2)	а	F: ttcttcatgcaattgtcggt R: ctgctccctgcttgtgtg Probe: tgctcgcgcactactcagcg	60	95
GFP2 (in lgLGFP2)	b	F: tgaccctgaagttcatctgc R: gaagtcgtgctgcttcatgt Probe: cccaccctcgtgaccaccct	60	125
IRES (in lgLGFP2)	с	F: ccctaggaatgctcgtcaag R: cctaacgttactggccgaag Probe: tttccgggccctcacattgc	60	139
BSR (in lgLGFP2)	d	F: aatggcttctgcacaaacag R: gcgacagagaagattacaatgc Probe: cgaattgccgctcccacatg	60	141
2b	е	F: tccaatcagaaactgaagctg R: cgctctgcttcacacgtc Probe: aggaaacgaaacagtctccagaaagca	60	80
3	f	F: agctggaggacaggaatagc R: ctctgcttgctgctgtgc Probe: cgctctgcttcctcggcaca	60	109
W fragment, upstream of cores (DIVAC 1)	g	F: gatctgctacagccactcca R: gctggatggagacatagggt Probe: cagcacctccagccatccca	60	113

W fragment, between cores (Δ601-800)	h	F: aaacagctccaaactgagacc R: cacggcacaaaggtgtttat Probe: ccgagcttgtccacaggttgtaaaca	60	74
18S		F: taaaggaattgacggaaggg R: tgtcaatcctgtccgtgtc Probe: cgcaggctccactcctggtg	60	102

Table S1. Primer and probe sequences for experiments. (A) Primers for the creation of all tested DIVAC fragments. (B) qPCR primer pairs and probes for gene expression and ChIP. All sequences are written 5' to 3'.