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The main statistical analyses methods used in the paper “Medication for ADHD 

and Criminality” 

 

In the paper, we have used three main statistical analyses methods; Kaplan-Meier curves, (non-

stratified) Cox regression, and stratified Cox regression. These are standard analysis methods for time-

to-event (aka survival) data. However, there are two features in our data that complicate the analyses, 

as well as the interpretation of the results. 1) The covariate of main interest (ADHD medication) is time-

varying, and 2) the event of interest (conviction) is recurrent (in opposite to death, for instance, which 

can only occur once). In this Appendix we explain our main analyses in detail. We assume that the 

reader is already familiar with Kaplan-Meier curves and Cox regression for time-stationary covariates 

and non-recurrent events.  

We illustrate the theory with a simple toy example. Consider Figure S1, which displays the follow-up for 

two fictitious individuals,   and  . At enrollment (month 0), neither   nor   is medicated (   ). 

Individual   starts taking the medication at 12 months after enrollment (   ), and continues until he 

is censored, at 20 months after enrollment. Individual   starts taking the medication at 10 months after 

enrollment, and continues until he is censored, at 32 months after enrollment.   is convicted at 2 

months after enrollment, and at 8 months after enrollment.   is convicted at 9 months after enrollment, 

and at 17 months after enrollment. We use unfilled circles for censoring, and filled circles for conviction.  
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Figure S1 

 

In what follows, we assume that there are   observed events (i.e. convictions) at distinct times 

          . In our toy example, we have that    ,     ,     ,     , and      . To 

make notation simple we assume that there are no “ties”, i.e. that there is at most one event per time-

unit. Extensions to data with ties are straight-forward. For a time-stationary covariate  , the Kaplan-

Meier curve for covariate level   is calculated as  

 ̂ ( )  ∏ (  
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where     and     is the is the number of events at time    and the number of individuals in the risk set 

at time   , respectively, among those individuals with     (that is,     is either 0 or 1). Breslow and 

Crowley (1974) formally showed that the Kaplan-Meier curve consistently estimates the conditional 

survival function 
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where  
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is the conditional hazard function (rate) at time  , given    . Heuristically, the convergence of  ̂ ( ) 

to   ( )  can be seen by noting that  ̂ ( ) can be written as  
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and noting that 
   

   
 is the “sample analog” of  (  |   )  .   

There is no universally accepted method to deal with time-varying covariates in Kaplan-Meier curves. 

Snappin et al (2005) gave an overview of various ad hoc methods that have been used in the medical 

literature, and showed that these methods have serious limitations. They proposed an alternative 

method, which they called the “extended Kaplan-Meier curve”. They showed that the extended Kaplan-

Meier curve has a more principled underpinning than the ad hoc methods, and that it can be viewed as 

a nonparametric analog to Cox regression with time-varying covariates, which is standard in the 

literature (Klein and Moeschberger, 1997). Let  (  ) denote the covariate level at event time   , for a 

given individual. Snappin et al (2005) defined the extended Kaplan-Meier curve for covariate level   as   

 ̂ 
 ( )  ∏ (  
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where    
  and    

  is the is the number of events at time    and the number of individuals in the risk set 

at time    , respectively, among those individuals with  (  )   . The crucial distinction between  ̂ ( ) 

and  ̂ 
 ( ) is that in the latter, the risk set is updated at each event time   , including only those who 

happen to have covariate level   at the particular event time   . Thus, in the computation of   ̂ 
 ( ) 

individuals can enter and exit the risk set several times during follow-up. Using arguments similar to 

those in Breslow and Crowley (1974), it can be shown that  ̂ 
 ( ) consistently estimates the function  
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The function   
 ( ) is not a true survival function, in the sense that it cannot generally be written as a 

probability of surviving time  , for any fixed subpopulation. The reason is that it integrates hazard 

functions which apply to different subsets of the population, defined by the current covariate level at 

each time    Rather, it can be viewed as a non-parametric summary of covariate-specific hazards. There 

is an important special case though, in which interpretation can be simplified. Suppose that the 

conditional hazard at time  , given current covariate level  ( )   , is independent of the covariate 

history. We can then write  

 * | ( )   +   * | ( )           +          ( ) 

I.e. the hazard at time   for those who had covariate level   at time   is the same as the hazard at time    

for those that had covariate level   all the way from baseline and up to time  . Under assumption (9) we 

have that     

  
 ( )     * ∫ * | ( )           +  

 

 

+          (  ) 

which by definition is the survival function for the fixed subpopulation that have covariate level   all 

through follow-up.1 In terms of our application; if the conviction hazard is independent of medication 

history, given current medication level, then the extended Kaplan-Meier curves can be interpreted as 

the (estimated) survival functions for those who are on and off medication, respectively, all through 

follow-up. We note that assumption (9) can be empirically tested, for instance by running a Cox 

regression analysis with both current and (some summary of) previous medication as covariates in the 

model. We did this for our data (see the section labeled “Long-term associations” in the paper), 

detecting no statistically significant association with previous medication, given current medication. 

Thus, we tentatively conclude that assumption (9) may be reasonable for our data.    

Neither the ordinary Kaplan-Meier curve, nor the extended Kaplan-Meier curve, is developed for 

recurrent events. To deal with recurrence of convictions, we reset time to 0 for each individual, at every 

conviction. We emphasize that this procedure does not imply that individuals are assumed to have the 

same  hazard functions regardless of the number of previous convictions; it simply implies that we are 

“pooling” (e.g. averaging) the hazard functions over previous history of convictions. To use a simple 

                                                           
1
 Snappin et al (2005) stated, without motivation, that extended Kaplan-Meier curves ”represent hypothetical 

cohorts whose covariate values remain constant during follow-up”. Our argument shows that this interpretation is 
only valid under assumption (9).  
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analogy, suppose we pool men and women together, and compute the risk in the pooled population. 

This does not imply that we assume the risk to be the same for men and women, only that we average 

the sex-specific risks. For consistency, we have treated recurrent events in the same fashion in the Cox 

regression analyses described below. We note that in the stratified Cox regression analysis (see below), 

we have adjusted for number of previous convictions by including number of previous convictions as a 

categorical covariate in the regression model.  

To compute the extended Kaplan-Meier curves for our toy example by hand, it is useful to first “pre-

process” the data so that the follow-up is divided into sub-periods for each individual. Specifically, every 

conviction and every switch of medication level initiates a new sub-period. A sub-period that follows a 

conviction is considered as starting at “baseline” (time 0 in the analyses), whereas a sub-period that 

follows a switch in medication level is considered left-truncated at the time of the switch. A sub-period 

that ends with a medication switch is considered as censored. Figure S2 displays the sub-periods 

produced by the fictitious individuals   (left panel) and   (right panel). For instance, the topmost line to 

the left in Figure S2 corresponds to the first sub-period for  , that starts when   is enrolled, and ends 

with the conviction at 2 months after enrollment. The bottommost line to the left in Figure S2 

corresponds to the last sub-period for  , that starts immediately after the switch in medication level at 

12 months after enrollment, and ends with the censoring at 24 months after enrollment. Figure S3 

displays the same sub-periods, but divided into medicated (left panel) and non-medicated (right panel) 

sub-periods.  
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Figure S2 
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Figure S3 

After this pre-processing, the extended Kaplan-Meier curves can be conveniently computed by applying 

the formula for the ordinary Kaplan-Meier curves (equation (1)) to the sub-periods, as if they would 

come from unrelated individuals with time-stationary covariates. Among the set of medicated sub-

periods, there is only one conviction, at month 8. At this time, there are three medicated sub-periods at 

risk. Thus, the extended Kaplan-Meier curve for the medicated sub-periods starts at 1 at month 0, then 

takes a step down to (1-1/3) = 2/3 at month 8, and remains at 2/3 through the rest of follow-up.  Among 

the set of non-medicated sub-periods, there are three convictions, at months 2, 6 and 9. At month 2 

there are 4 sub-periods at risk, at month 6 there are 2 sub-periods at risk, and at month 9 there is only 

one sub-period at risk. Thus, the extended Kaplan-Meier curve for the medicated sub-periods starts at 1 

at month 0, then takes a step down to (1-1/4) = 3/4 at month 2, followed by a step down to 3/4 x (1- 

1/2) = 3/8 at month 6, and finally takes a step down to 3/8 x (1-1/1) = 0 at month 9. Figure S4 displays 

the extended Kaplan-Meier curves for medicated (solid line) and non-medicated (dashed line) sub-

periods. 
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Figure S4 

 

 

 

We next turn to the Cox regression analysis. We used the standard model 

   , * | ( )   +-     *  ( )+              (  ) 

 

This model assumes that the ratio of the conditional hazard functions is constant over time, and equal to 

    ( ). Let  ( )(  ) be the medication level at time    for the individual whose conviction time is   . Let 

 (  ) be the risk set at time   , and let   (  ) be the medication level at time    for individual   in the 

risk set  (  ) . We estimated   by maximizing the standard partial likelihood 

∏
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(Klein and Moeschberger, 1997). To account for the fact that sub-periods from the same individual may 

be correlated, we computed a robust (“sandwich”) standard error for  ̂, treating each individual as a 

“cluster” (Lee et al, 1992).  

With medication coded as 0 (no medication) and 1 (medication), the partial likelihood for our toy 

example equals 

 

       ( )
 

 

      ( )
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      ( )
          (  ) 

For instance, the first term in the likelihood corresponds to the conviction that occurred for individual   

at time 2. At this time,   was not medicated so the numerator in the term becomes    (   )   . At 

time 2, the risk set consists of all sub-periods in Figure S2 that begin before time 2 and end after time 2, 

that is, all sub-periods except the bottommost left and the second topmost right. Four of these sub-

periods are non-medicated, whereas two are medicated, so that the denominator in this term becomes 

equal to     (   )       (   )         ( ). The partial likelihood is maximized at    ( ̂)  

    . Thus, for the data in our toy example, the estimated hazard function for those that are currently 

on medication is only 21% of the estimated hazard function for those that are currently off medication.  

Both the extended Kaplan-Meier curves and the ordinary Cox regression are “unadjusted” analysis. 

Thus, the observed inverse association in these analyses between medication and conviction may be 

explained by confounding. A powerful way to reduce confounding is to let each individual “serve as his 

own control”. That is, by comparing the conviction rate for the same individual under medicated and 

non-medicated periods. Such a “within-individual” analysis is free from confounding due to all factors 

that are constant within the individual across follow-up, e.g. genetic make-up and early childhood 

environment (Allison, 2009). For time-to-event data, within-individual analyses can be conveniently 

carried out with stratified Cox regression. Let   * | ( )   + denote the conditional hazard at time  , 

given covariate level  ( )   , at time  , for individual  . The stratified Cox regression analog to the 

model in equation (11) is given by  

   ,  * | ( )   +-     *   ( )+              (  ) 

 

In equation (14),    ( ) is an individual-specific baseline hazard, and     ( ) is the within-individual 

hazard ratio. The standard way to estimate   is to maximize the partial likelihood, which is obtained by 

computing the likelihood in equation (12) for each individual separately, and multiplying the individual 

contributions (Klein and Moeschberger, 1997).  

The partial likelihood for our toy example is given by   
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For instance, the first term in the likelihood corresponds to the conviction that occurred for individual   

at time 2. At this time,   was not medicated so the numerator in the term becomes    (   )   . At 
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time 2, the risk set consists of all sub-periods in the left panel of Figure S2 that begins before time 2 and 

end after time 2, that is, all sub-periods except the bottommost. None of these three sub-periods are 

medicated, so that the denominator in this term becomes equal to 3. The partial likelihood is maximized 

at    ( ̂)        Thus, for the data in our toy example, the estimated hazard function for those that 

are currently on medication is 39% of the estimated hazard function for those that are currently off 

medication.  

In the analysis of our real data, we adjusted for age, previous number of convictions, and previous 

number of switches in medication levels, by adding these factors as categorical variables in the stratified 

Cox regression model.   

All analyses were carried out with SAS Version 9.2 (Cary, NC. SAS Institute Inc, 2008), except for the 

calculations of the extended Kaplan-Meier curves for where package survival for R was used 

(Therneau, 2012). 
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