"Supplemental material"

MicroRNA-155 controls CD8⁺ T cell responses by regulating interferon signaling

Donald T. Gracias^{1#}, Erietta Stelekati^{1#}, Jennifer L. Hope¹, Alina C. Boesteanu¹, Travis Doering², Jillian Norton¹, Yvonne M. Mueller¹, Joseph A. Fraietta¹, E. John Wherry², Martin Turner^{3*}, Peter D. Katsikis^{1*}

¹Department of Microbiology and Immunology, Center for Immunology and Vaccine Science, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA; ²Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; ³Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham, Cambridge CB22 3AT, United Kingdom

Contact Information:

*Correspondence: P.D.K. (peter.katsikis@drexelmed.edu) or M.T. (martin.turner@babraham.ac.uk)

Supplementary Figure 1. MiR-155 induction by cytokines, and phenotype and tissue distribution of miR-155-KO OT-I cells. (a) Treatment of unstimulated naive CD8⁺ T cells with 10ng/ml of TNF, IFN- γ , IL-1- β or 1000U/ml IFN- β for 24h does not increase miR-155 levels. These cytokines only modestly increased further these levels in activated CD8⁺ T cells. Pooled data from 5 experiments shown. (b) $CD8^+$ T cell numbers, naive/memory phenotype and activation status of splenic CD8⁺ T cells in uninfected OT-I and miR-155-KO OT-I mice. Representative flow cytometric plots shown from 3 experiments performed. Numbers in plots indicate percent of CD8⁺ T cells. (c) Day 4 lung and MLN miR-155-KO OT-I cell numbers after adoptive transfer into WSN-OVA infected animals. Day 10 lung miR-155-KO OT-I cells shown for comparison. In order to visualize cells early, 5×10^5 cells were transferred. Data from 2 experiments and n=6. *P<0.05 (Student's t-test). (d) Days 3 and 7 splenic miR-155-KO OT-I cell numbers after adoptive transfer into LM-OVA infected animals. In order to visualize cells early, 5×10^5 cells were transferred. Data from 2 experiments and n=5-6. (e) Day 60 memory miR-155-KO OT-I and wild-type OT-I in the MLN and lungs of mice that received adoptive transfers of wild type and miR-155-KO CD8⁺ T cells and were infected with WSN-OVA influenza virus. Memory in spleens is shown in Figure 1. Bars show mean \pm SEM and are from 2 independent experiments (n=5). (f) MiR-155 deficiency does not selectively affect SLEC or MPEC during the primary response. Both SLEC and MPEC numbers are reduced on day 10 of infection. Left: Representative flow cytometric plots of day 10 shown. Numbers in plots indicate percent of CD8⁺ T cells. Right: Data from 3 experiments n=9-11. *P<0.05, ***P*<0.003 (Student's t-test).

Supplementary Figure 2. Apoptosis, cytokine production and IFN sensitivity of miR-155-KO CD8⁺ T cells. (a) *In vitro* apoptosis of miR-155-KO OT-I and OT-I cells stimulated with peptide loaded irradiated splenocytes. Day 4 cultures shown. Data from 5 experiments and *n*=5 per group. (b) MFI for IFN-γ and TNF intracellular stain after *ex vivo* peptide stimulation of miR-155-KO OT-I and OT-I cells. Day 10 post-infection shown. Data from 3 experiments and *n*=7. (c) and (d) miR-155-KO CD8⁺ T cells are sensitive to Type I IFN-mediated inhibition. miR-155-KO and wild-type OT-I cells were stimulated with OVA(257–264)-pulsed irradiated splenocytes and cultured with media containing IL-7, IL-15 and IL-2 for 6 days. During the last 3 days cell were treated ± IFN-β or left untreated (UT). BrdU was added during the last 20h. (c) Representative flow cytometric plots showing reduced BrdU incorporation by miR-155-KO OT-I CD8⁺ T cells in the presence of IFN-β. Numbers in plots indicate percent of CD8⁺ T cells. (d) Bar graph depicting mean ± SEM reduction in number of live BrdU⁺ miR-155-KO OT-I CD8⁺ T cells with addition of IFN-β. Data from 3 independent experiments (*n*=3 per group). **P*<0.008 (Student's t-test).

Supplementary Figure 3. IKKE, Bach1, SOCS-1, SHIP-1 and SMAD2 do not mediate the defect of miR-155-KO CD8⁺ T cells. (a) Representative histogram showing increased IKK protein expression in activated miR-155-KO CD8⁺ T cells. Data representative of 4 independent experiments shown. (b) IKKE deficiency and Bach1 shRNA retroviral knockdown in miR-155-KO OT-I cells does not restore responses. Dot plots depict numbers of donor OVA(257-264)-specific CD8+ T cells in the lungs day 10 postinfection. Recipient mice were transferred with either miR-155-KO OT-I, IKKE-KO OT-I, miR-155-KO IKKε-KO OT-I or wild-type OT-I cells, and then infected one day later with WSN-OVA. For Bach1 knockdowns, miR-155-KO OT-I or control OT-I cells were transduced with retroviruses expressing Bach1 shRNA or control shRNA and 48h later intravenously transferred into recipient mice which were then infected with WSN-OVA. (c) SOCS-1 mRNA levels are not increased in activated purified miR-155-KO compared to wild-type CD8+ T cells. RT-PCR data from 2 experiments shown. (d) Activated miR-155-KO OT-I cells do not express significantly more SOCS1 mRNA than wild-type OT-I. miR-155-KO and wildtype OT-I cells were stimulated with OVA(257-264)-pulsed irradiated splenocytes for 4 days and SOCS1 measured by RT-PCR. (e) SOCS-1 siRNA reduces SOCS-1 mRNA levels by ~60% in purified OT-I and miR-155-KO OT-I cells after 72h. Non-targeting control siRNA had no effect on SOCS-1 levels. (f) SOCS-1 siRNA transfection of miR-155-KO OT-I cells does not restore their *in vivo* expansion. Numbers of donor OVA(257-264)-specific CD8⁺ T cells in lungs shown. Cells were transfected for 72h and then adoptively transfer into congenic hosts that were infected with WSN-OVA influenza virus. Data are from 2 independent experiments and n=6 mice per group. (g) Transduction of miR-155-KO OT-I cells with retroviruses expressing SOCS1 shRNA failed to restore their expansion. Cells were retrovirally transduced for 48h, adoptively transferred and infected as described above (n=3-4 mice per group). (h) Protein levels of SHIP1 and SMAD2 by immunoblotting in unstimulated (Us) and activated (Act) miR-155-KO CD8⁺ T cells did not differ from wild-types. CD8⁺ T cells were activated with anti-CD3 and anti-CD28 antibodies. Blots are representative of 2 independent experiments (n=2 per group).

Supplementary Table 1: Differentially expressed genes between *in vitro* activated wild-type and miR-155-KO CD8⁺ T cells, as identified by SAM analysis (delta=1.6, FDR=0.082).

Downregulated				Upregulated			
>2.00 - fold							
Hist1h2ab				Fbxw10	Rtp4	Trim16	Klhdc1
Hist1h2bb				Slfn5	Rundc3b	Xafl	Tas2r143
				Dhrs3			
1.99–1.50 - fold							
							OTTMUSG00000
Slc16a3	Hist1h4h			Ifit3	Gstt1	Art2a	005523
Gm5452	Hist1h4i			Gm5970	Sgms1	Trib2	Lyst
Tk1-1	Fanca			Gm12258	Zbp1	Slfn9	Irf7
Mrpl39	Dscl			Nr1d2	Ect2l-11	5830416P10Rik	Ppp3cc-1
Nuf2	Hist1h2bh			Arhgap26	Rragd	Slco3a1	Tspan14
	Kif15			Acpp	H2-T24	N4bp1	Gm6907
				Fam26f	9330175E14Rik	Oasl2	
				D730003115Rik	Gbp3		
1.49–1.20 - fold							
Kif11	Pebp1-2	2210021J22Rik	Mcm5	Gvin1-2	Itga6	Lmbrd1	Ifit2
Ppic	Zmiz1	Mrps23	Pla2g15	Tbc1d23	Zfp420	Eif1-1	Uvrag
Ak311-1	Wdr90	Itgb3bp-1	Snrpe	Cirbp	2810021J22Rik	Brwdl	Nsun4
Fam84a	Snrpd2-2	Unc13a	Gm8944-1	Impg2	Ccpg1	Zpbp2	Cd151-1
Prelid2	Dtl	Tmsb10	Gm8944	Sgk3	6430601008Rik	Sdcbp	1700034F02Rik
Acsl6	Pgk1-1	Ndufaf2	Gjb3	Icosl	Tgtp-1	Myo9a-8	Poli
Cd160	Pgk1-2	Snrpd2-4	Eif3i	Fam46c	B430306N03Rik	Gbp5	Hectd3
Slc2a3	Pgkl	Hn1l-2	Alkbh7	Ifngr1	Tgtp	Trappc2	Dnajc7
Fam111a	Eif4a3-2	Snrpd2	Slc2a1	Tratl	Arid4a	Kidins220	Irfl
Ankrd37	Calm3	Serf1-1	Hprtl	Dennd4c	Ifngr2	AI606181	Arl15
Gm4924	Tbl3	Acaca-1	1700001E04Rik	1700109H08Rik	Parp10	0610040B10Rik	Rab33b
Hnrpll	3110082117Rik	E2f1	Nucb1	Stat2	D14Ertd668e	Cript	Bat5
Tkl	Cox4i1	1700065D16Rik	4930422G04Rik	Nqol	Fam55c	Dtx3l	Mobkl3
Pfkl	Ankle1	Syce2	Angptl2	Ube2d1	1700102P08Rik	Mppe1	Kdm2a-1
H2afx	Gm5050	Cenpm	Erbb3	A530023014Rik	Rps6ka5	Wdr37	Zfp263
Ccdc50	Clqbp	Cad	Cotl1	Il7r	Zbtb16	Prdm2	Picalm
Anxa6	Tomm7	Mtif3	Rgs1	Sft2d2	Serf2	Csnk1g2	9530048009Rik
E2f3-1	Lsm3	Slc9a5	Ndufa8	9530009G21Rik	A530017D24Rik	Gm5039-2	Ubl3
Ngfrap1	Dnmt3a	D830030K20Rik-5	Mcm7	5930434B04Rik-1	AU042671-2	Gpr21	Map3k7ip2
Fam162a	Nup155	D830030K20Rik-2	Rnf26-1	Inpp4b	Llcam	Parp9	BC030336
Mogs	Prmt1	RP23-38E20.1-2	Med9	Jarid2	Ctns	Mef2a	Kbtbd3
Priml	Pole	Pgam1-1	Ubash3a	Ncoa3	Sla2	Gm9964	Gm10374
Smyd2	Tmsb10-1	Pgam1	Agpat6	4930453N24Rik	Tgfbr1	Vps13c	Dapp1
Ncapd2	Dapl1	Nup85	Tubg2	Rblccl-l	Sike1	Eef2k	2010111101Rik
Gm12260	5330426P16Rik	Gm8824	Atp5e	Msi2	Ahr	Gclc	Ccdc130
Snrpd2-3	Shmt1	Snrpd2-1	Chaf1b	Tnfaip3	Nfe2l2	Tspo	Rusc1
Prmt1	Pgm2	Gdf11	Tmsb10-1	Gimap9	D130062J21Rik	A230046K03Rik	Cdk3
Pole	Nrip3	Tctex1d2	Dapl1	Arhgef12	Kbtbd2	Sgcb	Mlycd
	ENSMUSG00000	9530058B02Rik					
	79376			Tmx4	Vps54	Kras	Gpr146
				Smad5	Prickle3	Zfp512	Plk3
				Smcr8	Inpp5d	Klf7	
				Nin	Aff4	Pde4b	