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A Estimating the TiPI

As stated above we consider the TiPI on the process of error propagations because it allows
us to derive explicit expressions. Thus we start with the definition of the error propagation to
derive eq. (11) and provide further insights.

As a first step, using the notion of an orbit of the dynamical system defined by the map
ψ : Rn → Rn we define a sequence of states ŝt′ ∈ Rn

ŝt′ = ψt
′−(t−τ) (st−τ ) (A1)

for any time t′ within the time window t − τ ≤ t′ ≤ t starting from state ŝt−τ = st−τ . ψk(s)
denotes the k-fold iteration of the map ψ with ψ(0) (s) = s. We can consider ŝt′ as the predicted
state over t′ − (t− τ) time steps. In particular, the prediction over τ steps is ŝt = ψτ (st−τ ).

The error propagation can now be defined as the difference

δst′ = st′ − ŝt′ (A2)

between the true state st′ , eq. (6), and the state ŝt′ obtained by the deterministic dynamics
(ψ), see Figure 1. The dynamics of the δst′ obeys the rule

δst′ = L (st′−1) δst′−1 + ξt′ +O(‖ξt′‖2) (A3)

with starting state δst−τ = 0 and L(s) denoting the Jacobian matrix of ψ. This can be derived
by using ŝt′ = ψ (ŝt′−1) and writing

δst′ = st′ − ŝt′ = ψ (st′−1) + ξt′ − ψ (ŝt′−1)

= ψ (ŝt′−1 + δst′−1)− ψ (ŝt′−1) + ξt′

= L (st′−1) δst′−1 + ξt′ +O(‖ξt′‖2)

In the following we will use this approximation which is arbitrary good for infinitesimally
small noise. Note that this dynamics corresponds to that of a linear system, however with state
dependent dynamical operator L. In a linear system, L is independent of the state and thus
ŝt′ = Lŝt′−1 such that the dynamical evolution of δs and s are the same.

As a remark, in the case of finite noise, we can obtain a related exact rule by using the mean
value theorem of differential calculus stating that under mild restrictions one can find a state
s̃t′ ∈ [ŝt′ , st′ ] so that

δst′ = L (s̃t′−1) δst′−1 + ξt′ (A4)

yields the exact dynamics of the multi-step prediction error δst.
The interesting point now is that Iτ (St : St−1) (eq. (4)) is equal to that of the process

defined by the error propagation dynamics, i. e.

Iτ (St : St−1) = Iτ (δSt : δSt−1) (A5)
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For the proof consider two random vectors S and S′ together with the shifted vectors U =
S + a and U ′ = S′ + a′. Using that the probability densities pS (s) and pU (u) obey pU (u) =
pU (s+ a) = pS (s) one obtains H (S) = H (U). Analogously, the joint probability densities
obey pUU ′ (u, u′) = pUU (s+ a, s′ + a′) = pSS′ (s, s′) so that H (S′|S) = H (U ′|U).

This result is central for the following arguments—we will make use of the fact that the
dynamics eq. (A3) is more easily treated to obtain explicit estimates for the TiPI and its
gradient.

Explicit expressions

By iterating eq. (A3) we obtain an explicit expression for δst (using here and in the following
L (t′) for L (s t′))

δst =

τ−1∑
k=0

L(k) (t− 1) ξt−k (A6)

with
L(k) (t− 1) = L (t− 1) · · ·L (t− k) , and L(0) = I (A7)

for any t. In general it is very complicated to obtain the entropy of δSt in realistic situations
with high dimensional physical systems. Therefore we will base the further considerations on
a convenient estimate of the latter. With white Gaussian noise, the process δSt is Gaussian
as well, i. e. δSt ∼ N (0,Σt) (it is a linear combination of independent Gaussians), so that the
entropy is given in terms of the covariance matrix Σt of the random vector δSt as [1]

Hτ (δSt) =
1

2
ln |Σt|+

n

2
ln 2πe (A8)

|A| denoting the determinant of a square matrix A and

Σt =
〈
δStδS

>
t

〉
=

∫
p (δst) δstδs

>
t dδst (A9)

is the covariance matrix of δSt and p (δst) is the probability density distribution of the random
variable δSt. Using eq. (A6), explicit expressions for Σ can readily be obtained, see eq. (A13)
below.

By the same arguments, the conditional entropy is defined, using eq. (7), as

Hτ (δSt|δSt−1) = Hτ (Ξt) =
1

2
ln |Dt|+

n

2
ln 2πe (A10)

with

Dt =
〈
ΞtΞ

>
t

〉
=

∫
p (ξt) ξtξ

>
t dξt (A11)

where Ξ denotes the process of the noise with p (ξ) being the probability density function of
Ξ ∼ N (0, Dt). Thus we obtain the estimate of the TiPI as

Iτ (δSt : δSt−1) =
1

2
ln |Σt| −

1

2
ln |Dt| (A12)

which is the entropy of the state δs minus that of the noise.

White noise

Explicit expressions revealing more details of the theory are obtained for the case of white noise,
i. e.

〈
ξtξ
>
t′

〉
= 0 if t 6= t′, so that using eq. (A6) in eq. (A9) yields

Σ =

τ−1∑
k=0

L(k)D
(
L(k)

)>
(A13)
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In particular, in the case of τ = 2, the shortest nontrivial time window, we find

Σ = D + LDL>.

It is also useful to introduce the transformed dynamical operator L̂ =
√
D−1L

√
D so that

Σ =

τ−1∑
k=0

√
DL̂(k)

(
L̂(k)

)>√
D (A14)

and (using
∣∣∣√DM√D∣∣∣ = |MD| = |M | |D|)

Iτ (δSt : δSt−1) =
1

2
ln

∣∣∣∣∣
τ−1∑
k=0

L̂(k)
(
L̂(k)

)>∣∣∣∣∣ (A15)

This corresponds to using a so-called whitening transformation on the state dynamics, replacing
in eq. (A4) the state vector δs by a new vector δx =

√
D−1δs so that the covariance matrix of

the noise in the δx dynamics is just the unit matrix.
Interestingly, the L̂ operators also exist if the overall noise strength λ = ‖ξ‖ goes to zero,

so that Iτ stays finite although the defining entropies, conditioned on the state st−τ , are equal
to zero in the deterministic system. This can be seen by introducing D̂ = λ−2D where D̂ stays

finite with λ→ 0, we have L̂ =
√
D̂−1L

√
D̂ =

√
DL
√
D since λ cancels out.

The linear case

For linear systems explicit expressions for the PI were obtained in [2]. In this case L is not
dependent on the state st of the system so that L(k) = Lk in eq. (A7). Using eq. (A13), with
τ →∞, we reobtain the results of [2]. Note that all eigenvalues of the Jacobi matrix L must be
less than one by absolute value so that the limes will exist. This requirement also guarantees
that the conditioning on st−τ looses its influence for τ →∞. Under the additional assumption
that L is a normal matrix and the noise is isotropic the explicit expression Σ =

(
I− LL>

)
was

obtained.

B Explicit gradient step

In order to derive the general gradient step on the TiPI based on eq. (13) we need to calculate
the derivative ∂

∂θ ln |Σt|. Considering any (square) matrix M depending on a single parameter
θk of the set θ we have (see for example [3])

∂

∂M
ln |M | = 1

M>

where we write 1
M for M−1 and

∂

∂θk
ln |M | =

∑
ij

M−1
ji

∂Mij

∂θk
= Tr

((
M−1

)> ∂M
∂θk

)
so that, using Σ = Σ> =

〈
δsδs>

〉
and omitting the time index

∂

∂θk
ln |Σ| = Tr

(
1

Σ

∂

∂θk

〈
δsδs>

〉)
(A16)

By using the cyclic invariance of the trace we obtain from eq. (A16)

∂

∂θ
ln |Σt| =

〈
δs>t Σ−1 ∂

∂θ
δst

〉
(A17)
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now valid for the entire set of parameters θ. By eq. (A4) we obtain (ignoring the dependence
of ξ on the parameter)

∂

∂θ
δst′ =

∂L (t′ − 1)

∂θ
δst′−1 + L (t′ − 1)

∂

∂θ
δst′−1

so that by iteration

∂

∂θ
δst =

τ−1∑
l=1

L(l−1) (t− 1)
∂L (t− l)

∂θ
δst−l

where L(k) (t− 1) is given in eq. (A7). Using a>Wb =
(
W>a

)>
b, we write

∂

∂θ
ln |Σt| =

τ−1∑
l=1

〈
δu>t−l+1

∂L (t− l)
∂θ

δst−l

〉
(A18)

where (Σ is symmetric)

δut−l+1 =
(
L(l−1) (t− 1)

)>
Σ−1
t δst (A19)

Stipulating the self-averaging property of the stochastic gradient, see section One-shot gradients
for details, we realize the update rule as

∆θ = ε

τ−1∑
l=1

δu>t−l+1

∂L (t− l)
∂θ

δst−l (A20)

Here we see again that τ = 2 is the simplest non-trivial case where the sum consists of a single
term.

Characterizing the parameter dynamics

In order to better characterize the parameter dynamics, let us consider for the moment Σ at
the r. h. s. of eq. (A16) to be some fixed, positive matrix (not depending on the parameters θk).
Then, we can write

Tr

(
1

Σ

∂

∂θk

〈
δsδs>

〉)
=

∂

∂θk

〈
Tr

(
1

Σ
δsδs>

)〉
=

∂

∂θk

〈
δs>

1

Σ
δs

〉
(using the cyclic invariance of the trace in the last step). The update rule eq. (13) becomes
using again the self-averaging

∆θ = ε
∂

∂θ
‖δs‖2Σ (A21)

where ‖a‖2M = a>M−1a defines the length of a vector a in the metric given by M (considered
fixed in the current gradient step). From eq. (A21) it becomes obvious that following the
gradient is to increase the norm of δs in the Σ metric.

C Neural networks—derivation of the update rule

We derive the parameter dynamics for neural networks eq. (28) from the general parameter
dynamics for the two-step time window given by eq. (14). According to eq. (26) we have
L = V G′ (z)C + T with z = Cs + h and G′(z) = diag[g′1(z), . . . , g′m(z)]. Putting this into
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eq. (14) yields (omitting the time indices)

1

ε
∆Cij = δu>

∂L

∂Cij
δs

= δu>V G′
∂C

∂Cij
δs+ δu>V

∂G′

∂Cij
Cδs

=
(
G′V >δu

)
i
δsj + δu>V

∂G′

∂Cij
Cδs (A22)

The second term remains to be calculated. Because G′ is a diagonal matrix the vectors on both
sides of the derivative carry the index i such that we get

δu>V
∂G′

∂Cij
Cδs =

(
δu>V

)
i
g′′i (z)sj (Cδs)i (A23)

In the case of g (z) = tanh (z) we find, using g′′i (z) = −2g′i (z) gi (z) and a = g(z)

δu>V
∂G′

∂Cij
Cδs = −2

(
δu>V G′

)
i
(Cδs)i aisj = −γiaisj (A24)

with

γi = 2 (Cδs)i δµi (A25)

δµi =
(
G′V >δu

)
i

(A26)

The final update rule follows by putting eq. (A24) and eq. (A26) into eq. (A22)

∆Cij = εδµiδsj − εγiaisj (A27)

Analogously we obtain the parameter dynamics of h as

1

ε
∆hi = δu>

∂L

∂hi
δs = δu>V

∂G′

∂hi
Cδs

=
(
δu>V

)
i
g′′i (z) (Cδs)i = −γiai (A28)

A more compact matrix notation can be obtained by introducing the diagonal matrix Γ

Γ = diag[γ1, · · · , γi]

and thus (reintroducing the time indices)

1

ε
∆Ct = δµtδs

>
t−1 − Γtats

>
t (A29)

1

ε
∆ht = −Γtat (A30)

In the case of arbitrary neuron activation functions g we obtain equivalent formula by
defining

γi = − g′′i
g′igi

(Cδs)i δµi (A31)

Note the factor − g′′i
g′igi

is 2 in the case of g = tanh.

In the derivation of eqs. (A24) and (A28) we ignored the dependence of the state s in
g′ (Cs+ h) on the parameters C and h. This dependence can be considered explicitly if the
state is at a fixed point. In that case, a more detailed discussion in [4] (section 6.2) shows that
the effect of the derivative can be condensed into the so-called sense parameter α multiplying
γ. Thus we replace γ as

γi ← αγi (A32)

where α is an empirical constant, typically α ≥ 1, by which the sensitivity of the sensorimotor
dynamics to external perturbations can be regulated. This works also in more general cases
like a limit cycle dynamics, see [4].
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D Learning the inverse covariance matrix

Note that the covariance matrix given in eq. (15) can be easily obtained by the on-line update
rule

∆Σt = η
(
δstδs

>
t − Σt

)
(A33)

or
Σt+1 = (1− η) Σt + ηδstδs

>
t (A34)

realizing a sampling over a restricted period of time. The update rate η defines the time
horizon tH ∝ η−1 for the averaging. The only remaining nontrivial operation in that setting
is the inversion of the covariance matrix Σ. However, this can also be reduced to elementary
operations by using the Sherman-Morrison formula as given by(

A+ uv>
)−1

= A−1 − 1

1 + v>A−1u
A−1uv>A−1

Putting A = (1− η) Σ and uv> = ηδsδs> we get(
(1− η) Σt + ηδstδs

>
t

)−1
=

1

1− η
Σ−1
t −

η

(1− η)
2
(

1 + η
1−η δs

>
t Σ−1

t δst

)Σ−1
t δstδs

>
t Σ−1

t

and thus

Σ−1
t+1 =

1

1− η
Σ−1
t −

β

1− η
Σ−1
t δstδs

>
t Σ−1

t

where β ∈ R is given by

β =
η(

1− η + ηδs>t Σ−1
t δst

)
Note that δs>t Σ−1

t δst featuring in the denominator of β is a scalar so that with Σ−1
t given there

is no matrix inversion to be done.
If Σt is an n × n matrix, the cost of getting Σt+1 is O

(
n2
)
. This is very favorable if the

dimension of the sensor space is large. Using the above formula, the only true inversion (of order
O
(
n3
)
) has to be done just once, when starting the process (with a convenient initialization of

Σ).
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