
Analysis of Single Moculecule Photobleaching

Keegan Hines

April 24, 2013

Introductory

This tutorial is a walkthrough of the analysis functions that accompany the paper Inferring Subunit Stoi-
chiometry from Single Molecule Photobleaching. Since these functions were written using the language R,
this document provides a guide for importing data into R and navigating the R environment as well as
descriptions and examples of each of the functions. Users are encouraged to import their own data and use
these methods for analysis.

Working in R and loading data

Open up R and have a look around. In particular, make sure that all the files relating to photobleaching
analysis are in your current working directory. The function getwd() can be used to display the current
working directory and we can list the contents of the current directory with the function dir(). If the current
directory is not correct, use setwd() or use the menu options Misc -> Change Working Directory.

> getwd()

[1] "/Users/keegan/supplemental"

> dir()

[1] "#tutorial.Rnw#" "bleaching_functions.R"

[3] "data1.csv" "figure"

[5] "tutorial.aux" "tutorial.log"

[7] "tutorial.pdf" "tutorial.Rnw"

[9] "tutorial.Rnw~" "tutorial.tex"

My directory has several files named tutorial.*** which are related to compiling this document (and
also a directory called figure) that will not be in your directory. Aside from those, your directory should
have all the files listed above. In particular, make sure there is a file bleaching functions.R, which contains
the functions we’ll use, as well as a .csv file, which contains example data.

Let’s get started. We’ll read in everything in the bleaching functions.R file and verify that we now
have new functions we can access.

> source("bleaching_functions.R")

> ls(1)

[1] "confidence" "estimate.theta" "gamma"

Suppose I have measured some single molecule photobleaching events and have stored all the counts of
bleaching steps in a text file. There is a file data1.csv in this directory that will serve as example for how to

1

import data. This file is a comma separated text file which lists integers which presumably represent counts
of bleaching events. Note, these functions will not work with raw photobleaching data, but only with lists
of numbers of bleaching steps (ie. lists of integers). Therefore, you will need to format your own data to be
similar to the file data1.csv. Alternatively, data can also be copy-and-pasted into the console and assigned
to a variable. So long as the data is of mode numeric, everything should work.

For importing data from a text file, we can create a variable whose contents are read in from the file and
then verify that the everything was formatted correctly. We can do a quick visual check of the data to see
that it looks binomially distributed.

> imported.data <- as.numeric(read.csv("data1.csv", header = FALSE))

> print(imported.data)

[1] 3 1 3 1 2 1 0 2 3 2 1 3 1 2 1 1 1 3 1 0 2 2 3 1 3 1 1 3 0 3 2 2 3 1 2

[36] 1 0 3 2 2 3 3 1 1 2 1 1 2 1 3 3 2 1 2 3 1 2 2 3 2 1 2 2 3 2 3 2 1 3 2

[71] 2 2 1 2 2 2 2 2 2 4 2 2 3 4 2 2 1 2 3 1 0 4 3 3 2 2 1 2 3 2

> barplot(table(imported.data), xlab = c("Number of Steps"), ylab = c("Number of Observations"))

0 1 2 3 4

Number of Steps

N
um

be
r

of
 O

bs
er

va
tio

ns

0
10

20
30

40

For exploratory purpose, we can also generate random data through simulation, which is what we will
do for the remainder of this tutorial.

2

Analysis Functions

One of functions available to us is called estimate.theta(). Recall from the main text of the accompanying
paper that the parameter θ is the probability of a particular binary event happening. This parameter plays
an important role in a binomial distribution, Bn(n,θ), which is the probability distribution of observing any
number of events, given that n are possible and each occurs with probability θ. Ultimately, we need to
estimate n and θ from some observations. In the paper, it was noted that the estimate of θ depends on an
assumption about n such that as n increases, the estimate of θ will decrease. The function estimate.theta()
provides a point estimate of θ with respect to a particular n. For example, let’s simulate some binomially
distributed observations and then use those to estimate the true θ.

> simulated.data <- rbinom(100, 4, 0.5) #100 observations from Bn(4,.5) model

> table(simulated.data)

simulated.data

0 1 2 3 4

6 21 43 20 10

> estimate.theta(simulated.data)

[1] "For 4 subunits, best estimate of theta is 0.52"

By default, this function finds the largest observation and assumes that to be n. However, we can specify
that we wish to estimate θ with respect to any potential n.

> estimate.theta(simulated.data, n = 5)

[1] "For 5 subunits, best estimate of theta is 0.41"

It is pointed out in the main text that estimating the true n from such observations can be problematic.
As we just saw, the optimal estimate of θ will shift downward as we consider larger n. In some instances, the
result will be that many potential n can fit some data identically well. Due to this, methods were developed
to quantify confidence when anaylzing such observtions. The two methods of quantification are described in
equations [4] and [9] in the main text and are implemented in the function confidence().

This function requires only one argument, the name of the variable containing the data. Alternatively,
we can supply a call to rbinom() which will simulate random data, and allow us to more easily examine
the effects of the parameters on estimation confidence.

> confidence(simulated.data)

[1] "Number of subunits is estimated to be 4 with confidence of 0.7009"

> confidence(rbinom(100, 4, 0.5))

[1] "Number of subunits is estimated to be 4 with confidence of 0.5848"

For example, increasing θ results in increased confidence, as we might have expected. Additionally, larger
n results in less confidence.

> # Notice effect of increasing theta

> confidence(rbinom(100, 4, 0.6))

[1] "Number of subunits is estimated to be 4 with confidence of 0.9061"

3

> confidence(rbinom(100, 4, 0.7))

[1] "Number of subunits is estimated to be 4 with confidence of 0.9968"

> # Notice effect of increasing n

> confidence(rbinom(100, 4, 0.7))

[1] "Number of subunits is estimated to be 4 with confidence of 0.9992"

> confidence(rbinom(100, 8, 0.7))

[1] "Number of subunits is estimated to be 8 with confidence of 0.7056"

I mentioned that the function confidence() can implement one of two calculations. By default, this
function computes the full Bayesian estimate of confidence which is described by equation [9] of the main
text. In the paper, I argue that this method is the most conservative and appropriate way to estimate
confidence. Nonetheless, the simpler calculation of equation [4] can also be implemented by including the
argument Bayes=FALSE.

> confidence(simulated.data)

[1] "Number of subunits is estimated to be 4 with confidence of 0.7009"

> confidence(simulated.data, Bayes = FALSE)

[1] "Number of subunits is estimated to be 4 with confidence of 0.7043 ."

In general, the non-Bayes estimate will be an overestimate of confidence. However, for small sample
sizes (or low θ), it is not impossible for the Bayesian estimate to be larger. The reason for this is that the
Bayesian estimator takes into the account the full variance in the observations, whereas the simpler method
just assumes that θ is known with perfect precision and does not consider the actual data. As a result, the
Bayesian estimator is more sensitive to sampling variance in small sample sizes. Additionally, as N increases,
the two methods will become equivalent.

> confidence(rbinom(350, 4, 0.6))

[1] "Number of subunits is estimated to be 4 with confidence of 0.9996"

> confidence(rbinom(350, 4, 0.6), Bayes = FALSE)

[1] "Number of subunits is estimated to be 4 with confidence of 1 ."

The final function can be used to address whether certain observations might be artifacts. As described
in equation [10] of the main text, the parameter γ is an estimate of whether the largest number of observed
n occur with anomalously low prevalence. For example, let’s suppose that the true n is four and that a data
collection algorithm resulted in a small number of artifactual observations larger than four. We can visually
inspect the data and notice that the distribution looks inconsistent. The function gamma() provides an
estimate of observing a similar distribution under the null hypothesis that n is equal to the largest number
of observations. Similar to a p-value, a low value for γ is evidence against the null hypothesis and thus we
might exclude all observations larger than four as artifacts.

> messy.data <- c(rbinom(150, 4, 0.7), 5, 5, 5, 5) # We have 150 observations from a

> # binomial distribution with n=4, and also several anomalous observations

4

> # of size 5.

> barplot(table(messy.data), xlab = c("Steps"), ylab = c("Number of Observations"))

0 1 2 3 4 5

Steps

N
um

be
r

of
 O

bs
er

va
tio

ns

0
10

20
30

40
50

60

> # Data looks strange. It seems we should conclude n=5, but maybe the

> # events of size 5 are artifacts.

> gamma(messy.data, Bayes = FALSE)

[1] 0.05067

In this instance, γ is small and therefore we might reject the null hypothesis, depending on our threshold.
If we remove all observations of size 5 from the data set, we can ask again whether the resulting data are
anomalous with respect to how many events of size n are observed.

> gamma(messy.data[messy.data < 5], Bayes = FALSE)

[1] 0.4077

> confidence(messy.data[messy.data < 5], Bayes = FALSE)

[1] "Number of subunits is estimated to be 4 with confidence of 0.9997 ."

5

This estimate of γ is large, which indicates that the distribution is not atypical. Therefore, we might
conclude that n=4 and it turns out that we can make that claim with high confidence. This function also
has a Bayesian version which takes into account the full uncertainty in θ and is generally more conservative.

> gamma(messy.data, Bayes = FALSE)

[1] 0.05067

> gamma(messy.data) #Bayesian method is default

[1] 0.06548

6

