The AfaR small RNA controls expression of the AfaD-VIII invasin in pathogenic *Escherichia coli* strains

Christophe Pichon^{1,2}, Laurence du Merle^{1,2}, Isabelle Lequeutre³, and Chantal Le Bouguénec^{1,2,*}.

¹Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, 25-28 Rue du Docteur Roux, F-75724 Paris, France.

²CNRS, ERL3526 Microbiologie fonctionnelle et moléculaire, F-75724 Paris, France.

³Institut Pasteur, Centre d'Enseignement, 25-28 Rue du Docteur Roux, F-75724 Paris, France.

Running title: Control of AfaD invasin expression.

* Corresponding author: Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, Département de Microbiologie, 25-28 Rue du Docteur Roux, F-75724 Paris, France.
Tel.: +33 1 40 61 32 80; Fax.: +33 1 40 61 36 40; E-mail: <u>clb@pasteur.fr</u>

Supplementary Tables & Figures

Supplementary Figure S1: Relative levels of expression of the *afaABCDEFR* genes from eight *afa-8*-carrying *E. coli* strains analyzed by qRT-PCR. The AL10, AL213, AL511, 239KH89, 183, BW25113 + pILL1320, BW25113 + pILL1322 and BW25113 + pILL1323 strains were grown to an OD_{600} of 0.6 in LB medium. We set *afaA* expression levels to 1 and the expression levels of other genes are expressed relative to *afaA*.

Supplementary Figure S2: Results from circular RACE experiments on the *afaC* mRNA. (A) Position of ribonuclease cleavages (gray arrow) in the *afaB/afaC* intergenic region. (B) Position of ribonuclease cleavages (gray arrow) in the *afaC/afaD* intergenic region. The "Met" tag and asterisks indicate the start and stop codons of the CDS, respectively.

Supplementary Figure S3: RNase III/LS/G/P dependence in the regulation of *afaA*, *afaC* and *afaD* mRNAs and AfaR sRNA. (A) Relative expression of the *afaA*, *afaC*, *afaD* mRNAs and AfaR was determined by qRT-PCR in RNase-depleted strains with respect to the corresponding wild-type strains, both carrying the pILL1320 plasmid. A minimal two-fold change in the relative level indicated a significant implication of the tested RNase (symbolized by dashed lines). (B) Model of the posttranscriptional regulation of the *afa-8* gene cluster by RNases and AfaR sRNA. The open arrows indicate the position of cleavage sites.

Supplementary Table 1:

Amplification	Name	Primer sequence	
Allelic exchange			
	afaR.FRT.5	5'-CATCAAAAAGTGGACGTCTGTTATGGAACATATGTAGCTAGTGTAGGCTG	
afaR ::KmFRT			
	afaR.FRT.3	5'-GIGATATITTAATGIACAGICAACIACAACAGIAGCIGCCCATATGAATA	
		5' GCCCCCTTCTTCATCAGGTTAATTTTCCATCAGTCGGTCCATATGAATAT	
afaRE ::KmFRT	afaRE.FRT.3	CCTCCTTA_3'	
		5'-TCTGGTGCGCACTGTGTGTGTGTGTGACCAAGGAGTACCCTGGTGTAGGCTG	
afaD ::KmFRT	afaD.FRT.5	GAGCTGCTTC-3'	
		5'-ACTGAATAGTTACTTTATTAGCATAAAGAAATTATGAATACATATGAATA	
	alaD.FK1.5	TCCTCCTTA-3'	
	afaPrA FRT 5	5'-ACGGAGTTTTCAGCTCCGTTAGGAACGTCAGTATATTGTCTTTCATGTGTA	
afaFA ::KmFRT		GGCTGGAGCTGCTTC-3'	
ayar 11 minin 101	afaPrA.FRT.3	5'-TAACCCCGTTTACTCTGACAGGGAAACAAACTCTCAGCATCATATGAATA	
Allalia avahanga varif	ination	ICCICCITA-3	
Allelic exchange veri	ofoP vorif5	5' TTGGTGATGCAGTGTCCAGC 2'	
afaR ::KmFRT	afaR verif3	5'-TCTATAATACTGCTTCACCAC-3'	
	afaD verif5	5'-GAGCGGACTGGATGAAACCG-3'	
afaD ::KmFRT	afaD.verif3	5'-GCTATTTTAGAGGGCAGCCA-3'	
	afaPrA.verif5	5'-CATCAGGTAATATCTGGCCT-3'	
ajaFA ::KmFRI	afaPrA.verif3	5'-CACTTTCTCACTGTGCATCC-3'	
Cloning			
afa8	clon.afa8.5	5'-CCCGGGAAGCTTAATGGCATGGTTCATCGTCT-3'	
ujuo	clon.afa8.3	5'-CCCGGG <u>AAGCTT</u> GCCAGGCTGATTTAAACACAA-3'	
afaR	Cl.afaR.EcoRI	5'-TTTTTT <u>GAATTC</u> TAGCTACATATGTTCCATAACAGAC-3'	
5	Cl.afaR.Xbal	5'-IIIIIII <u>IUIAGA</u> CAGIUIGGUGUAGGUAGIIG-5'	
afaD::gfp	afaC.INSII	5' GTTTTTGCTAGCCGCCAGACTGGATATAACCAC 3'	
	afaD NsiI	5'-TGCATGGAAATCAGCTGCTTGGGCCTGATG-3'	
lacZ ::afaD	afaD.XbaI	5'-GTTTTTTCTAGACCATAACAGACGTCCACTTT-3'	
	mutafaR5	5'-CTTACATTgtATATGCATTTTAAC-3'	
ајак*	mutafaR3	5'-GTTAAAATGCATATacAATGTAAG-3'	
afaD*…afn	mutafaCD5	5'-TGGTCAgtTACACACAGTGC-3'	
ujubs)p	mutafaCD3	5'-GCACTGTGTGTAacTGACCA-3'	
afaA::lacZ	pQFafaA.Xbal	5'-CCCGGG <u>TCTAGA</u> CAGCGCCGGAATGAACACC-3'	
0	pQFafaA.Xhol	5' -CCCGGGTCTAGATATTTATCCTGAAGGCAAAA 2'	
afaB::lacZ	pQFafaB.Xbal	5'-CCCGGGCTCGAGTCAGGGAGCATCTTGTTATGG-3'	
	pQFafaC.XbaI	5'-CCCGGGTCTAGATATTCACACCTGAGCCACGG-3'	
afaC::lacZ	pQFafaC.XhoI	5'-CCCGGGCTCGAGTGGTGCATCAGGAAAAGTCA-3'	
afaDulao7	pQFafaD.XbaI	5'-CCCGGG <u>TCTAGA</u> CAGGGTACTCCTTGGTCACA-3'	
ujuDucZ	pQFafaD.XhoI	5'-CCCGGG <u>CTCGAG</u> ACTCGAGTAGGGGGAAGAGC-3'	
afaE::lacZ	pQFafaE.XbaI	5'-CCCGGG <u>TCTAGA</u> ACCTTATCCTTATACTTGGT-3'	
· j · · · · · · ·	pQFafaE.Xhol	5'-CCCGGG <u>CTCGAG</u> CAGTGTCCACCTTTCATCA-3'	
afaR::lacZ	pQFafaR0.Xbal	5'-IIIAAA <u>CICGAG</u> IIIAAAIGUIICCACCAGIG-5' 5' CCCGGGTCTAGAAATGTAAGTGTAAACTGAGTGCCG 3'	
Cloning verification	pQ1 arako. Anor	J-CCC000 <u>1CIA0A</u> AATOTAAOTOTAAACTOAOTOCCO-J	
cioning verification	verif nZE2R 5	5'-AATAGGCGTATCACGAGGCC-3'	
afaR	verif.pZE2R.3	5'-GTCGACCTGCAGCTAGGTCT-3'	
afaD fusion	pZE-CAT	5'-TGGGATATATCAACGGTGGT-3'	
ujuD jusion	JV0155	5'-CCGTATGTAGCATCACCTTC-3'	
afa ::lacZ fusion	pQF50.5	5'-CGACTCCTGCATTAGGAAGC-3'	
	pQF50.3	5'-GTTTTCCCAGTCACGACGTT-3'	
Quantitative RT-PCR	50 F		
5S	55.FW	5' -GGTGGCACTTCCCTACT $2'$	
	JJ.KI ofo A Ew	5' CCCCCATCCACACTCACAAAA 2'	
afaA	afaA RT	5'-AACACCGTGCTGCTCACAGG-3'	
(D	afaB.Fw	5'-GAGCCGTTTGCGAATTGTCC-3'	
afaB	afaB.RT	5'-CATCATGCTTTGGCGGAATG-3'	
afaC	afaC.Fw	5'-CTGCTGAACTGGCAGGCAAA-3'	
ujuC	afaC.RT	5'-ATGCCCGGCTCAAGAGTGAC-3'	
afaD	afaD.Fw	5'-CAGTCTGGCGCAGGCAGTT-3'	
5	ataD.RT	5'-CUTTCUTGTTGCCACCTTCG-3'	
afaE	alae.rw afae RT	J-AUAUTIUUUUAUUAUUTIU-5 5'-ATCGGTGCGCCGTATGAACT-3'	
	afaF.Fw	5'-CCGTGCCGGACAACAGAAAT-3'	
afaF	afaF.RT	5'-CCGGCGAGCGTTTTATCTTTC-3'	
afaR	afaR.Fw	5'-ATGTTCCATAACAGACGTCCAC-3'	

	afaR.RT	5'-AATGTAAGTGTAAACTGAGTGCCGTA-3'	
lacZ	lacZ.Fw	5'-CGTTTTACAACGTCGTGACTG-3'	
	lacZ.RT	5'-GGCCTCTTCGCTATTACGC-3'	
	gfp.Fw	5'-TACAAGACGCGTGCTGAAGT-3'	
gлр	gfp.RT	5'-TGTGTCCGAGAATGTTTCA-3'	
5' RACE			
AfaR sRNA	pri.afaR.RT	5'-GCCATTAAACTTGTATTGGTGATGCAGTGTCC-3'	
5' afaC mRNA	rigBC.RT	5'-GTGCATTATTCACACCTGAGC-3'	
3' afaC mRNA	rigCD.Fw	5'-GAGGAGAAAGAAGCAACTGGT-3'	
afaD mRNA	pri.afaD.RT	5'-CCTTCCTGTTGCCACCTTCG-3'	

Supplementary Table S2: Additional strains.

Name	Description / Relevant characteristics	Phenotypes	Source / Reference
E. coli strains			
A19	rna-19, gdhA2, his-95, relA1, spoT1, metB1		CGSC# 5997
AB301-105	A19 rnc-105	RNase III⁻	CGSC# 5400
GW10	W3110 zce-726::Tn10		64
GW11	GW10 cafA::cat	RNase G	64
MH1	$sup0, hsdR, \Delta lacX74, rpsL$		65
TY0324	$MH1 \Delta rnlA::km$	RNase LS ⁻	65
ts709	rnpB-709 ^{ts}	RNase P ^{ts}	66

CGSC: Coli Genetic Stock Center.

Supplementary results

The afaABCD mRNA is cleaved by multiple RNases

Characterization of the transcriptional units of the *afa-8* gene cluster led us to suggest that RNases might regulate the level of *afaABCD* mRNA posttranscriptionally. We tested this hypothesis, by analyzing the dependence of four *E. coli* RNases (RNase III/P/G and LS) on the expression of the *afa-8* gene cluster. The pILL1320 plasmid was introduced into *E. coli* Δrnc -105 (RNase III⁻), $\Delta rnlA$ (RNaseLS⁻) and $\Delta cafA$ (RNase G⁻) strains, and an *E. coli* strain carrying the thermosensitive allele *rnpB*-709 (RNase P^{ts}) and their corresponding wild-type (WT) counterparts. The WT, Δrnc -105, $\Delta rnlA$ and $\Delta cafA$ strains were grown to an OD₆₀₀ of 0.6 at 37°C. In the case of the thermosensitive *rnpB*-709 mutant, samples were obtained as described fors RNase E strains. The levels of *afaA*, *afaC*, *afaD* mRNAs and of the AfaR sRNA were determined by qRT-PCR in these strains and are expressed relative to the WT values. No significant differences in *afaA* transcription were observed between the tested mutants, suggesting that RNases had no effect on transcription (Supplementary Figure S3A). However, a significant increase in the level of transcription of *afaC* and *afaD* and *afaR* was observed when RNase III was inactivated. Interestingly, the *afaD* mRNA and the AfaR sRNA were less abundant in an RNase LS-depleted strain. Our findings do not rule out the possibility of a significant effect of RNases G and P. The results presented in the text suggest that the RNA was cleaved around *afaC*, by an unknown RNase. We hypothesized that RNase III might be involved in *afaABCD* mRNA processing. A putative model of regulation by RNase E/III and AfaR sRNA is shown in Supplementary Figure S3B.

Supplementary References

- 64. Wachi, M., Umitsuki, G., Shimizu, M., Takada, A. and Nagai, K. (1999) *Escherichia coli cafA* gene encodes a noval RNase, designated as RNase G, involved in processing of the 5' end of 16S rRNA. *Biochem. Biophys. Res. Commun.*, **259**, 482-488.
- 65. Otsuka, Y. & Yonesaki, T. (2005) A novel endoribonuclease, RNase LS, in *Escherichia coli*. Genetics, **169**, 13-20.
- 66. Kole, R., Baer, M., Stark, B., and Altman, S. (1980) E. coli RNAse P has a required RNA component *in vivo*. Cell, 19, 881-887.

B

RNase E and AfaR-dependent cleavages