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S1 STATISTICAL MODELS FOR READ COUNTS

The probability density function of the Negative Binomial distribution NB(k |r,p) is given by:

NB(k |r,p)=

(
k+r−1

k

)
(1−p)rpk, (A1)

where k∈N0 is the number of observed reads, r>0 and p∈(0,1). It can be seen as the distribution the sum of r independent
random variable which follow a geometric distribution with parameter 1−p. A more natural parameterization is in terms of
mean and variances of, NBµ,σ2, which will be used in the following. The exact parameterization follow from the relationships
µ= rp

(1−p) and σ2= rp
(1−p)2 . Therefore, the effective variance can be written as a function of µ and r:

σ2=µ+
1

r
µ2, (A2)

showing how the limiting case of no overdispersion is realized for r→∞. In this case the Negative Binomial distribution
converges to the poisson distribution. In order to simulate reads with biological variance we will use that the Negative Binomial
distribution can also be seen as the distribution of a poisson variable which has a intensity that is gamma distributed. with α=r
and β= p

(1−p) (see for example (7)). This will allow to separate the variances of the sequencing which is supposed to be poisson
and the biological variance.

S1.1 Accounting for fitted variance function
In general we assume that we have a set of counts (crg)r∈R for regions j in a gene g in sample R as well as an estimate of the
gene expression (Nr)r∈R. We then compute a normalizing constant to decouple the splicing rate from the gene expression

srg :=
|R|Nr

g∑
j∈RN

j
g

(A3)

After this we compute the set of normalize the counts ĉRg,j to

ĉrg,j :=
crg,j
srg

(A4)

For each region j in each gene g we then compute the mean counts

µg,j=
1

|R|
∑
r∈R

ĉrg,j (A5)

as well as the empirical variance:

σ2
R

g,j =σ2r∈R(ĉrg,j) (A6)

Once we have the normalized counts we perform a local regression on the points (µRg,j ,σ
2R
g,j). By this we obtain a function

mapping the empirical mean to the expected variance. This was done using the Locfit (27) package (See for details). It should be
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(a) Variance fit on real data between two biological replicates
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(b) Variance fit on real data between WT 0 h and WT 1 h

Figure S1. Log-Log plot of the variance fit on real data used for the simulation of the artificial dataset. The density of the empirical mean variance pairs is shown
in (blue). The estimated variance function is shown in (red). In (A) The fit is shown for the biological replicate at 0h in (B) the fit is shown when considering WT
0h and 1 as biological replicates.

noted that one could also perform a higher dimensional variance estimation by including also a bias model or the length of the
regions from which the counts have been used.

S1.2 Variance function estimation
Given a pairs of counts, normalized to account for gene expression, we estimated the variance function by fitting a function on
the empirical mean and variance. We used the Locfit package that is part of Chronux 2.00 obtained from http://chronux.org. As
parameters we used for bandwidth selection Mallows’s CP criterion, local polynomials of degree two and gamma distribution as
local likelihood function.

S1.3 Working without replicates
If replicate data is not available, conservative estimates of the variance function can be obtained from within-sample fits.
Following (7), we consider the two samples A and B as replicates to fit the variance function. If there were not differential
sites, this approximation would be fully legitimate, whereas in the presence of true differences we expect an over-estimation of
the variance fits, leading to a conservative approximation. Another possibility is to use an estimated variance function from a
similar sample as the ones under investigation.

S2 RDIFF

S2.1 rDiff.nonparametric
The test statistic for MMD is computed in two steps. First, all reads from both samples Ag,Bg⊂Xg for a gene g are mapped to
a feature spaceHg (a so-called ”reproducing Kernel Hilbert Space”) via a mapping function φ :Xg→Hg . Second, one computes
the means of Ag and Bg inHg by

µr=
1

Nr

N i∑
i=1

φ(xri ), r∈{Ag,Bg}, (A7)

where xri is the i-th example, i.e. read, in sample r and Nr is the cardinality of the set of reads ∇ for sample r. The test statistic
is then the distance between these means of Ag and Bg (discrepancy) in the norm of Hg , D=‖µAg

−µBg
‖Hg

. The larger this
distance, the less likely it is that both samples originated from the same distribution. p-values for the null hypothesis, of both
samples being drawn from the same distribution, can be computed with a range of different strategies (see (author?) (29)). Here,
we employ bootstrapping, where the reads are randomly shuffled among the two samples T times, computing the discrepancies
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Dt for each permutation t=1,...,T . Based on this empirical null discrepancy distribution we can compute the P -value for the
actual observed discrepancy between the two samples. The corresponding P -value follows as

pg=
1

T

T∑
t=1

I(D≤Dt), (A8)

where I(true)=1 and 0 otherwise. The minimal p-value that can be obtained by this strategy is limited by the inverse of the
number of permutations and especially for low p-values the ranking for different genes is not very conclusive. To improve this
ranking we resolved ties as described in Sec. S4.2.4.

There is a considerable freedom in designing the mapping function φ(·). This choice is possible via the use of kernel functions
k(·,·). Kernels compute inner products between two elements, i.e., k(x,x′)=〈φ(x),φ(x′)〉, and can be used to efficiently deal
with high dimensional representations of the elements. Here, each element, i.e. mapped read, is represented as a binary vector of
length |P |, which is 1 at the positions where the read maps to and 0 otherwise. Therefore, the feature space is P dimensional and
the mean computation in (A7) amounts to computing the average read coverage for each position given a set of reads. The MMD
test strategy for this representation therefore boils down to testing whether the difference between the average read coverages is
significantly greater than expected under a random assignment of all reads to samples.

S2.2 Biological variance The biological variance can be made allowance for by modeling samples of the null distribution to have
a variance according to a given variance such as the one derived for rDiff.parametric. This is done by choosing the size of the
random sample such that the variance induced by the subsampling matches the biological variance expected at each position. This
was done as described in the following paragraphs.
Bootstrapping variance When drawing a subsample of n reads from the total of Nr reads the distribution of the mean coverage
Crp at a position p follows a hypergeometric distribution HN (Nr,n,Crp), where Crp is the fraction of reads covering the position
p, Nr is the number of reads in the sample r and nr is the size of a subsample. This is because we draw samples from a finite
set without placing them back, which results in the aforementioned distribution. The variance σ2

r

subsample of the coverage of a
subsample of size nr is then given by:

σ2
r

subsample =nr
Crp
N

Nr−Crp
Nr

Nr−nr

Nr−1
(A9)

The variance of the read density reduces therefore to:

σ2
r

subsample-density =nr
Cr

p

Nr

Nr−Cr
p

Nr
Nr−nr

Nr−1
(nr)2

(A10)

=
fr(1−fr)
Nr−1

Nr−nr

nr
(A11)

where fr=
Cr

p

Nr is the fractions of reads covering position p.
Matching the bootstrapping and biological variances In order to obtain null samples with variance σbiological variance, we
matched the two variances at a position p. To determine the necessary subsample size nr for the variances to match, we solve the
following equation for nr:

σ2
r

biological variance =σ2
r

subsample-density (A12)

f(Crp)

(Nr)2
=
fr(1−fr)
Nr−1

Nr−nr

nr
(A13)

We simplify by cr=
fr(1−fr)
Nr−1 which leads to a sample size nr:

nr=
crfr

cr+
f(medianp(Cr

p))

(Nr)2

(A14)

In order to match the variances at not only one position of the coverage C=CA+CB we define 10 equally sized bins of position
bj ,j∈{1,...,10} where the coverage is in the same 10% quantile of positive coverage. For each of those bins and all samples r,
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we determine a subsample rate nrj by matching the variances at the median of the Coverage in that bin. We then compute a new
mean for the null distribution by:

µr=

10∑
j=1

∑
pCp|bj∑
pCp

1

nj

nr
j∑

r=1

φ(xrσ(r)|bj), (A15)

where σ is a permutation of 1,...,NA+NB .

S2.3 Alternative embeddings To further strengthen the information of the splice sites one can include this by the following
mapping function. Let K be the number of observed introns in the reads, that is the number of unique pairs of intron starts and
intron ends. Then we can define φ :X →RK as: φ(r)i=1 if r supports intron i and 0 otherwise.

S3 ARTIFICIAL DATA SIMULATION

First we simulated the transcript expressions of each gene in both samples and replicated. For a gene gj for each transcript
j∈{1,...,k} we drew a relative intensity eji ∈ [0,1] from a uniform distribution. We then normalized the vector ej=(ej1,...,e

j
k)

such that ‖ej‖=1 in order to get the relative abundance of each transcript in the gene. In order to generate the relative transcript
abundances for the two samples, called A, and B, we changed for half of the genes the relative transcript abundance. This was
done by, first choosing a vector vA,Bj ∈ [−0.5,0.5]k for each sample, which determined the change of the relative transcript
abundances and by choosing the strength of the change cj ∈ [0,1]. Both the strength and the change vector were drawn from
uniform distributions. For the sample A we adjusted ej by adding cjvAj from it and for the gene in sample B we adjusted ej by

adding cjvBj to it. If any eji was negative we set it to zero and if all eji were negative we repeated the procedure above. After that
we again normalized ej , to get the final relative transcript abundances for the two samples. From those relative abundances we
calculated the actual transcript abundances by multiplying the relative transcript abundances with the measured expressions from
our experiments. We did this by choosing without replacement for each gene the expression estimates for a gene in the top 5875
expressed genes. We then used the estimate from the first sample for sample A and the ones from the second sample for sample
B. After that we simulated the biological variance. We assumed that the transcript abundance is gamma distributed. Therefore,
we drew from a Gamma distribution for each biological replicate new transcript abundances. The Gamma distribution was for a

transcript with expressions ej was Γ

(
e2j

f(ej)−ej ,
f(ej)−ej

ej

)
. This Gamma distribution had the property that it was in concordance

with our variance model when adding a poisson noise to it and that the mean transcript abundance was unchanged. We then used
FluxSimulator (build 20100611) obtained from http://code.google.com/p/fluxcapacitor/downloads/list in order to simulated reads
for our expression model.

S4 APPLICATIONS OF METHODS

S4.1 rDiff
S4.1.1 rDiff.parametric Since we assume that the gene model is complete we discarded all reads which are not in accordance
with the gene model. For rDiff.parametric we estimated the variance function on counts in alternative regions. The fitting of the
variance was performed as explained above

S4.1.2 rDiff.nonparametric For rDiff.nonparametric we estimated the variance function on every counts at each position of the
genes. We used 1000 permutations for each gene. In order to speed up the computations on the real data we randomly sampled
10000 reads whenever there were more than 10000 reads mapping to a gene. For rDiff.nonparametric we estimated the variance
function on the Coverage per position. The fitting of the variance function was done as described above.
MMD-tie breaking In order to resolve ties for genes that had the same p-value we added to each p-value a small value

maxj=1,...,10pj
number of permutations+1 . This value is always smaller then the absolute difference between to of the raw p-values.

S4.2 Application of other methods
S4.2.1 CuffDiff We used for all our experiments CuffDiff from cufflinks-1.3.0 to detect differential splicing, which we obtained
from http://cufflinks.cbcb.umd.edu. Contrasting previous findings (14) which have found that version 0.9.3 performed better then
version 1.3.0 in identifying differential transcript expression, we have found that CuffDiff 1.3.0 performed better in detecting
differential splicing than the version 0.9.3. For our experiments we used default parameter except for the following parameters,
where we increased the iterations by a factor of 10:
--num-bootstrap-samples 200
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(b) Calibration of the methods

Figure S2. Comparison when the biological variance is large. (A) ROC-curve of rDiff, MISO and CuffDiff. (B) Comparison of the empirical false discovery rate
(empFDR) and the FDR computed out of the p-values provided by the methods, if given.

--num-importance-samples 10000
--max-mle-iterations 50000
The resulting p-values for each test locus in a gene have then been combined using Bonferroni’s correction for multiple testing.

S4.2.2 MISO We used for all our experiments MISO which we downloaded from the MISO website on 8/6/2011. For our
experiments we used the default parameters. For the computation of the ROC-curve we used the Bayes factor as the ranking
criterion. In the replicate setting we merged the replicated and proceeded as described above.

S5 EXPERIMENTAL DATA

S5.1 RNA isolation
RNA was isolated using the EURx RNA isolation kit and the following protocol. After grinding tissue in a Retsch Mill the sample
is thawed while vortexing in 400 µl RL buffer supplemented with 4 µl β-mercaptoethanol. After spinning for 3 min at maximum
speed the supernatant is transferred to a homogenization column. Spin for 2 min at maximum speed. 350 µl of 70 % ethanol
is added to the flow through and mixed by pipetting. The mixture is transferred to an RNA binding column that is then spun at
11000 x g for 1 min. All following centrifugation steps are done at this speed and duration unless noted otherwise. The column is
washed using 400 µl DN1. 50 µl DNR buffer mixed with 1 µl DNase I (Fermentas) are added to the column and incubated for 10
min at room temperature. After adding 400 µL the column is spun. The column is washed with first 650 µL, then 350 µL RBW
and subsequently spun with the cap left open to dry. The RNA is eluted in 40 µL RNase-free water.

S5.2 RNA-seq library construction and sequencing
mRNA libraries were prepared using the Illumina mRNA-Seq 8-sample Prep kit according to the manufacturer’s instructions,
with exception to the size selected, which was around 300 bp, and an additional gel purification on a 3% agarose gel after the
final PCR. Sequencing was run on the Genome Analzyer IIx using version 4 kits.

MAPPING

S5.3 Read alignment
The reads were aligned using Palmapper with the following parameter settings: Max number of mismatches: 6; Max number
of gaps: 1; Max edit operations: 6; Minimal considered hit length: 15; Mini- mum length of long hit: 25; Minimum length of
short hit: 8; Minimum combined length: 35; Longest intron length: 25,000; Maximum number of introns in spliced alignments:
2; Maximum number of spliced alignments per read: 5; CT: 10; Report a number of top scoring alignments: 10; Report spliced
alignments; Number of hits of a seed that lead to it being ignored: 10,000; Report splice sites with confidence not less than a
threshold: 0.9; Trigger spliced alignment, if unspliced alignment has at least this many mismatches: 2; Trigger spliced alignment,
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if unspliced alignment has at least this many gaps: 0; filter- splice-min-edit: 1; filter-splice-region: 5; qpalma-use-map-max-len
1,000; polytrim: 40. Splice site predictions based on the annotated genome were used for the alignment. For spliced alignments,
six bases on both sides of a splice site had to match perfectly. For all analyses we only considered reads which were longer than
70 bp. In order to further decrease the influence of suboptimally mapped read ends we clipped the three bases at the ends of all
reads. For each gene we also removed all reads which could have stemmed from other genes.

S5.4 Validation of splicing events

RNA was isolated as described above and reverse transcribed using RevertAidTMPremium Reverse Transcriptase (Fermentas)
according to the manufacturers instructions with the exception of RNase inhibitor, which was omitted, and using the maximum
amount of RNA possible in a reaction. qPCR reactions were prepared in 8 µL using MESA BLUE MasterMix plus for
SYBR c©(Eurogentec), 1 µL of cDNA diluted 1:100 and 0.2 µM of each primer. The qPCR was run on a BioRad CFX384
under following cycling samples: initial denaturation at 95◦C for 5 min, 40 cycles of 95◦C for 15 sec and 60◦C for 45 sec.
Fluorescence levels were measured at the end of every cycle, and at the end of the qPCR a melting curve for the products
was recorded. Every measurement was done in technical triplicates, and the average of the triplicates was formed and used for
downstream calculations.CT values deviating from their technical replicates by more than 0.5 were treated as measurement errors
and thus omitted from calculations. To determine the efficiency of every reaction 5 cDNA dilutions of a reference sample were
measured using every primer pair. The amount of cDNA in the reactions was set arbitrarily. The efficiency was then determined

by 10−
1
m −1 where m is the slope of a linear regression fitted to the data points of the different dilutions. The formula 10

CT−x

m ,
where CT is the average value of technical triplicates and x denotes the x-axis intercept of the aforementioned linear regression,
gave the amount of cDNA transcript present in each sample given the arbitrarily set amount of cDNA transcript. Then the values
were normalized to the amount of transcript calculated for total gene expression. The total gene expression was measured in a
transcript region that is identical for all isoforms. The value at the time point 0 h was set to 1, and fold changes in transcript levels
were calculated relative to this value.For each gene in every pair of comparison we have chosen the maximum fold change as
being representative for the change in the respective gene.

S5.5 Genes found by MMD
Classification of rDiff.nonparametric hits
In order to determine which region was the most causative for genes detect by rDiff.nonparametric we first computed the squared
difference of the mean coverages. We then reported the position which had the highest value when averaging the over the
neighboring covered 50b. Following this we determined, using the annotation, from which parts of the gene the reported position
came from. With this approach several regions can be detected for a gene, namely when the annotated regions overlap.

S5.6 Oversensitivity for highly expressed genes
We have found that rDiff.poisson showed a oversensitivity for high expressed genes. This is reflected by Fig S3. It shoes that the
high expressed genes are enriched in the upper part of the ranking. An example for a highly expressed gene which is detected
by the rDiff.poisson (p≤2.67∗10−07) but not by rDiff.parametric (p≤0.897) between WT 0 h and WT 1 h. As it can be seen
in the Fig S4 for the rDiff.poisson, the high expressed genes are enriched in the genes with a low p-value when compared to
rDiff.parametric.

Table S1. Table of the regions which contained the most differential 100 bp
in the three comparisons between the three time points, in genes found by
rDiff.nonparametric with a FDR smaller than 10%.

Event WT 0 h vs WT 1 h WT 0 h vs WT 6 h WT 1 h vs WT 6 h

Intronic 118 126 77
regions

5’ UTR 30 36 23

3’ UTR 46 47 23

First exon 29 22 13

Last exon 30 32 13

Other exons 18 10 14
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Figure S4. Log-mean expression of the top genes with the lowest p-value for the rDiff.poisson (blue) and rDiff.parametric (red). On the x-axis the number of
genes is shown which were used to compute the log-mean.

S6 DIFFERENTIAL RNA PROCESSING IN D. MELANOGASTER

We downloaded the paired end read sequences from the NCBI Gene Expression Omnibus (libraries GSM461177, GSM461178,
GSM461180, GSM461181). We trimmed the reads to 36b from the end. We then aligned the reads using Tophat 1.3.1 and the
following strict parameters: --segment-length 18
--max-insertion-length 0
--max-deletion-length 0
-g 10
using the genome Flybase, r5.22. We applied rDiff.nonparametric and rDiff.parametric as described in section S4. For the analysis
we treated the both ends of the read-pairs as independent single-end reads.


