

Figure S1 Analysis of FHA domain-Dbf4 interactions including a screen of all Y residues in Dbf4 residues 100-227. (A and B) The indicated Dbf4 tyrosine mutants were assayed for a two-hybrid interaction with the Rad53 FHA1 (A) and FHA2 (B) domains. Although Y127A and Y204A mutants eliminate the binding of both FHA domains, there is no loss of binding by substituting the structurally similar but non-phosphorylatable amino acid, phenylalanine (Y127F and Y204F). (C) Two hybrid interaction data of the Dbf4 N-terminus (66-227) with all remaining FHA domains in the yeast genome. Dma1 (pJK135, 137-302aa) (DUROCHER and JACKSON 2002), Dma2 (pJK137, 246-408aa) (DUROCHER and JACKSON 2002), Dun1 (pJK275, 1-160aa) (HAMMET *et al.* 2000), Far10 (pJK277, 61-227aa) (DUROCHER and JACKSON 2002), Fhl1 (pJK279, 253-400aa) (WADE *et al.* 2004), Fkh1 (pJK281, 41-185aa) (DUROCHER and JACKSON 2002), Fkh2 (pJK287, 1-254aa) (DARIEVA *et al.* 2003), Mek1 (pJK283, 1-152aa) (DUROCHER and JACKSON 2002), Pml1 (pJK289, 54-204) (BROOKS *et al.* 2009), Xrs2 (pJK285, 1-125aa) (PALMBOS *et al.* 2008).

Α			В	
Dbf4 Bait	Total cells	Y2H interaction Prey	Dbf4 Bait Total cells	Y2H interaction Prey
Vector		4 FHA1	Vector 🧉 🔍 🔍 🌳	FHA2
WT(66-227)		FHA1	WT(66-227)	• • • FHA2
V100A		• • • FHA1	V100A	FHA2
E101A		• • • FHA1	E101A • • • • 4	FHA2
E101K		• • • • FHA1	E101K • • • • •	FHA2
P102A		• • • • FHA1	P102A	FHA2
R103A		• • • • FHA1	R103A 💿 💿 😁 😆	FHA2
R103E		• • • • FHA1	R103E 💊 🔍 🔍 🤻	FHA2
V104A		FHA1	V104A 💽 🖤 🔍 🕸	FHA2
V104L		• • • • FHA1	V104L 🔍 🔍 🔍 🍣	FHA2
T105A		FHA1	T105A 🔍 🔍 🔍 🐐	• FHA2
P106A		🖲 🌒 🏩 🔅 🖕 FHA1	P106A 🔍 🔍 🗮 🗰	• • • FHA2
K107E		• • • FHA1	K107E 🔵 🔍 🔍 🤻	FHA2
E108A		• • • FHA1	E108A 🔍 🔍 🔮 🥐	FHA2
E108K		• FHA1	E108K 🔵 🔍 🔍 🔮	FHA2
E108D		• • • • FHA1	E108D 🌒 🔍 🖤 🖤	FHA2
L109A		FHA1	L109A 🖉 🔍 🔍 🖉	FHA2
L110A		• • • • FHA1	L110A	FHA2
E111A		• • • • FHA1	E111A • • • • •	FHA2
W112A		FHA1	W112A	FHA2
W112F		• • • • FHA1	W112F • • • • *	FHA2
Q113A		• • • FHA1	Q113A 🌢 🔍 🗣 🔹	FHA2
T114A		• • • • • FHA1	T114A 🔍 🔍 🗭 🌣	🔿 💐 🗼 🛛 FHA2
∆100-109		FHA1	∆100-109 🛇 🌒 🌢 🏟	FHA2
T105E		FHA1	T105E 🔍 🌒 🗣 🐐	FHA2
T105D	5,000	S FHA1	T105D 💿 💿 👁 🍲 🍲	FHA2
	Scm/-Trp-Leu	Scm/-Trp-Leu-His +2 mM 3AT	Scm/-Trp-Leu	Scm/-Trp-Leu-His +2 mM 3AT

Figure S2 Dbf4 residues V104, T105, E108, L109, and W112 were required for binding the Rad53 FHA domains. The indicated substitutions within residues 100-114 of the Dbf4 Nterminal (66-227) bait plasmid were assayed for a two-hybrid interaction with the Rad53 FHA1 (panel A) and FHA2 domains (panel B). Spotting as in Figure S1.

Figure S3 Dbf4 residues V104, E108, and L109 were critical for binding the Rad53 FHA domains. (A) The Dbf4 biotinylated peptide pThr105-FHA1 interaction was competed by the non-biotinylated T105-phosphorylated Dbf4 peptides (pThr105), but not by the same Dbf4 peptide with an E108A substitution, or by an unrelated phospho-serine peptide (pSpc72). (B) The pThr105-V104A and pThr105-L109A peptides were also defective in competing the biotinylated pThr105-FHA1 interaction.

Figure S4 The synthetic lethality between dbf4- $N\Delta109$ and rad53-1 or $rad53\Delta$ was not due to either loss of Cdc5 interaction or increased Dbf4 stability, but requires sequences between residues 82-109. Wild type and various dbf4 mutants were cloned in low-copy number (ARS/CEN/LEU2) vectors, driven by the DBF4 endogenous promoter. Plasmids were transformed into M1589 (rad53-1 $dbf4\Delta$::kanMX6 [pDBF4-URA3]) or M3581 ($rad53\Delta$::TRP1 $sml1\Delta$::HIS3 $dbf4\Delta$::kanMX6 [pDBF4-URA3]) and the wild-type DBF4-URA3 plasmids were selected against on FOA. Cells that could not grow on FOA plates were scored as having a synthetic lethal interaction. The N\Delta65 deletion causes increased Dbf4 stability by deleting sequences important for ubiquitin-mediated proteolysis. The Δ 82-88 deletion prevented the Cdc5 interaction with Dbf4, while the Δ 100-109 deletion prevented the interaction with Rad53 (see Figure S6).

Figure S5 Evidence for a Dbf4-Dbf4 N-terminal interaction. (A-B) Dbf4 N-terminal residues 66-227 were cloned in two-hybrid bait and prey plasmids separately to examine Dbf4 dimerization. Two-hybrid interactions were quantitated by spotting assays on selective media (panel A) or by β -galactosidase assays (panel B). (C) The expression of representative Dbf4 mutants in two-hybrid assays is shown by Western blotting against the c-Myc epitope tag on the Gal4BD (DNA Binding Domain) fusions. Whole cell extracts prepared by TCA extraction method were equally loaded onto each lane (Ponceau S staining, left). Gal4BD fused Dbf4 were detected by anti-Myc antibody (9E10), followed by anti-mouse second antibody (right).

Figure S6 Dbf4 sequences important for binding full length Rad53 and the Cdc5 PBD. (A) A series of deletion in full-length Dbf4 was assayed by two-hybrid for interaction with full length Rad53 (panel A) or with the Cdc5 Polo-box domain (PBD) (panel B). The *dbf4-* Δ 100-109 deletion caused a loss of Rad53 binding, but still allowed interaction with the Cdc5-PBD. The *dbf4-* Δ 82-88 deletion caused loss of Cdc5 binding but not Rad53. An N-terminal deletion through residue 81 (N Δ 81) or disruption of the Cdc5 binding site (Δ 82-88 and R83E) caused increased Rad53 binding compared to full length Dbf4. (C) Dbf4 point mutations were assayed for their two-hybrid interaction against full length Rad53. The Δ 100-109 deletion caused a loss of the two-hybrid signal similar to the vector control. The V104A, T105A, E108A mutations resulted in a diminished Rad53 interaction.

Scm/-Trp-Leu

Scm/-Trp-Leu-His

+2 mM 3AT

WΤ

T105A WT

T105A

WT T105A

88-227aa

94-227aa

100-227aa

Table S1 Plasmids used in this study

Plasmid	Description	Source
p4339	pCRII-TOPO::natRMX4	Goldstein and McCusker, 1999
pAcSG2		BD Biosciences
pCG10	pRS415- <i>DBF4 _{NΔ109}</i>	Gabrielse et al., 2006
pCG40	pAcSG2- <i>DBF4 _{№109}</i>	Miller et al., 2009
pCG44	pAcSG2- <i>DBF4</i> _{NA221}	Gabrielse et al., 2006
pCG52	pGBKT7 <i>-DBF4</i> 66-227	Miller et al., 2009
pCG53	рҮЈ204- <i>DBF4 _{№65}</i>	Miller et al., 2009
pCG60	рСG52 _{ADH1 promoter-Δ(-732)-(-802)}	Miller et al., 2009
pCG63	pCG60 W202E	This study
pCG64	pCG60 W202A	This study
pCG74	рҮЈ204- <i>DBF4 _{NΔ109}</i>	Miller et al., 2009
pCG75	рҮЈ204- <i>DBF4 _{№221}</i>	Miller et al., 2009
pCG91	pAcSG2- <i>DBF4 _{NΔ65}</i>	Gabrielse et al., 2006
pCG101	pCG60 GA159,160LL	This study
pCG108	pCG60 F165A	This study
pCG110	pCG60 F166A	This study
pCG146	pCG60 G159Q	This study
pCG265	pGAD-C1- <i>CDC7</i> ₁₋₅₀₇	Harkins et al., 2009
pCM16	pAcSG2-3myc- <i>CDC5</i> 65-705	Miller et al., 2009
pCM21	pCG60- <i>DBF4</i> 66-109	Miller et al., 2009
pET24a-GST		Chen and Weinreich, 2010
pGAD-C1		James et al. 1996
pGAD-Cdc5.3	pGAD-C1- <i>CDC5</i> 421-705	Miller et al., 2009
pGAD-YOR.3	pGAD-C3- <i>MSA169-530</i>	This study
pGBKT7		Clontech
pJK18	pCG60 T171E	This study
рЈК20	pCG60 E108A	This study
pJK22	pCG60 T171S	This study
pJK25	pCG60 V100A	This study
pJK26	pCG60 R103A	This study
pJK27	pCG60 V104A	This study
рЈК29	pCG60 P106A	This study
pJK31	pCG60 L109A	This study
pJK33	pCG60 K107A	This study
рЈКЗ4	pCG60 T105A E108A	This study
рЈКЗ6	pCG60 E108K	This study
рЈКЗ7	pCG60 T171A	This study
рЈКЗ9	pCG60 E101A	This study
pJK41	pCG60 P102A	This study

рЈК45	рҮJ204- <i>DBF4 _{NΔ81}</i>	This study
pJK47	рҮJ204- <i>DBF4 _{NΔ93}</i>	This study
рЈК48	рҮJ204- <i>DBF4 _{NΔ99}</i>	This study
pJK49	pCG60 T105S	This study
pJK51	pCG60 K107E	This study
pJK53	pCG60 T131A	This study
pJK55	pCG60 L110A	This study
pJK57	pCG60 E111A	This study
pJK59	pCG60 W112A	This study
pJK61	pCG60 T114A	This study
pJK67	рСG60- <i>DBF4 _{д94-99}</i>	This study
pJK76	pYJ204- <i>DBF4 _{№Δ88}</i>	This study
pJK82	pCG60 V104L	This study
pJK83	pCG60 L109V	This study
pJK85	pCG60 W112F	This study
pJK86	pCG60 T188A	This study
pJK89	pCG60 T157A	This study
pJK91	pCG60 T163A	This study
рЈК93	pCG60 TT168,169AA	This study
pJK95	pCG60 T175A	This study
pJK97	pYJ319 G653E	This study
рЈК99	pYJ319 T654A	This study
pJK101	pYJ319 N655A	This study
pJK103	pYJ380 G653E	This study
pJK105	рҮЈЗ80 Т654А	This study
pJK107	pYJ380 N655A	This study
pJK108	pCG60 Y127A	This study
pJK110	pCG60 Y139A	This study
pJK112	pCG60 Y198A	This study
pJK114	pCG60 Y204A	This study
pJK121	pCG60 Y127S	This study
pJK122	pCG60 Y127T	This study
pJK124	pCG60 I130A	This study
pJK125	pCG60 T171V	This study
pJK126	pCG60 Y204F	This study
pJK128	pCG60 Y127F	This study
pJK135	pGAD-C1- <i>DMA1</i> 137-302	This study
pJK137	pGAD-C1- <i>DMA2</i> 246-408	This study
pJK149	pCG60 T95A	Chen and Weinreich, 2010
pJK169	pET24a-GST- <i>RAD53</i> 2-164	This study
pJK170	pET24a-GST- <i>RAD53</i> 2-175	This study
pJK171	pET24a-GST- <i>RAD53</i> 2-279	This study

рЈК179	рСG60- <i>DBF4 _{NΔ87}</i> Т105А	This study
pJK181	рСG60- <i>DBF4 _{NΔ99}</i> Т105А	This study
pJK185	рСG60- <i>DBF4 _{№д93}</i> Т105А	This study
рЈК269	pET24a-GST- <i>RAD53</i> 2-164 R70A	This study
pJK275	pGAD-C1- <i>DUN1</i> 1-160	This study
pJK277	pGAD-C1- <i>FAR10</i> 61-227	This study
рЈК279	pGAD-C1-FHL1 253-400	This study
pJK281	pGAD-C1- <i>FKH1 41-185</i>	This study
рЈК283	pGAD-C1- <i>MEK1</i> 1-152	This study
pJK285	pGAD-C1- <i>XRS2</i> 1-125	This study
pJK287	pGAD-C1- <i>FKH2</i> 1-254	This study
рЈК289	pGAD-C1-PML1 54-204	This study
pJK380	pET24a-GST-RAD53 483-821	This study
pJK382	pET24a-GST- <i>RAD53 ₅₄₉₋₇₃₀</i>	This study
pJK410	pYJ380 R605A	This study
рЈК420	pET24a-GST- <i>RAD53</i> 523-821	This study
рЈК468	pCG60 R209E	This study
рЈК469	pCG60 K212E	This study
рЈК487	pCG60 K206E	This study
рЈК542	pRS415-DBF4 _{№94}	This study
рЈК544	pCG60-DBF4 _{N∆94}	This study
pMW1	рАсРК30- <i>DBF4</i> 1-704	Gabrielse et al., 2006
pMW47	pAcSG2-HAHIS6-CDC7 1-507	Gabrielse et al., 2006
pMW489	pRS415- <i>DBF4</i> 1-704	Gabrielse et al., 2006
pMW490	pRS416- <i>DBF4</i> 1-704	Gabrielse et al., 2006
pMW526	pRS415- <i>DBF4 _{NΔ65}</i>	Gabrielse et al., 2006
pRS415	LEU2 ARS-CEN	Sikorski and Hieter, 1989
pRS416	URA3 ARS-CEN	Sikorski and Hieter, 1989
рҮЈЗ	pCG60- <i>DBF4</i> _{Δ67-81}	Chen and Weinreich, 2010
pYJ4	рСG60- <i>DBF4 _{д67-88}</i>	Chen and Weinreich, 2010
pYJ5	рСG60- <i>DBF4 _{д67-93}</i>	Chen and Weinreich, 2010
pYJ6	рСG60- <i>DBF4 _{д67-99}</i>	Chen and Weinreich, 2010
pYJ7	рСG60- <i>DBF4 _{д67-103}</i>	Chen and Weinreich, 2010
pYJ8	рСG60- <i>DBF4 _{д67-107}</i>	Chen and Weinreich, 2010
рҮЈ9	рСG60- <i>DBF4 _{NΔ109}</i>	Chen and Weinreich, 2010
pYJ16	pCG60 S84A	Chen and Weinreich, 2010
pYJ30	pCG60 R83E	Chen and Weinreich, 2010
pYJ38	рСG60- <i>DBF4 _{д82-88}</i>	Miller et al., 2009
pYJ74	рМW489- <i>DBF4 _{д82-88}</i>	Chen and Weinreich, 2010
pYJ167	pCG60 S92A	Chen and Weinreich, 2010
pYJ182	pAcSG2- <i>DBF4 _{Δ82-88}</i>	Chen and Weinreich, 2010
pYJ193	рМW489- <i>DBF4 _{Δ76-109}</i>	This study

pYJ195	рМW489- <i>DBF4 _{Δ82-109}</i>	This study
pYJ198	рМW489- <i>DBF4 _{д66-109}</i>	This study
pYJ201	рМW489- <i>DBF4 _{NΔ65-Δ82-88}</i>	Chen and Weinreich, 2010
pYJ204	рGBKT7- <i>DBF4 ₁₋₇₀₄</i>	Miller et al., 2009
pYJ206	рҮJ204- <i>DBF4 ₄₈₂₋₈₈</i>	Miller et al., 2009
pYJ218	рМW489- <i>DBF4 _{д89-109}</i>	This study
pYJ219	рМW489- <i>DBF4 _{Δ100-109}</i>	This study
pYJ222	рМW489- <i>DBF4 _{д94-109}</i>	This study
pYJ308	pGAD-C1- <i>RAD53</i> 1-300	This study
pYJ319	pGAD-C1- <i>RAD53</i> 1-821	This study
pYJ326	рСG60- <i>DBF4 _{д89-93}</i>	Chen and Weinreich, 2010
pYJ332	рСG60- <i>DBF4 _{Δ100-109}</i>	This study
pYJ336	pCG60 T105A	This study
pYJ340	рМW489- <i>DBF4 _{Δ82-88-Δ100-109}</i>	This study
pYJ355	pYJ308 R70A	This study
pYJ368	pCG60- <i>DBF4 ₆₆₋₁₉₀</i>	This study
pYJ372	pCG60- <i>DBF4</i> 66-150	This study
pYJ380	pGAD-C1- <i>RAD53</i> 483-821	This study
pYJ384	pYJ319 R70A	This study
pYJ388	pYJ319 R605A	This study
pYJ392	pCG60 T105E	This study
pYJ394	pCG60 T105D	This study
pYJ422	рАсSG2- <i>DBF4</i> _{Δ100-109}	This study
pYJ424	pAcSG2- <i>DBF4</i> _{Δ82-88-Δ100-109}	This study
pYJ426	рМW489- <i>DBF4 _{NΔ65-Δ100-109}</i>	This study
pYJ428	pAcSG2- <i>RAD53</i> 1-821	This study
pYJ461	pYJ204 R83E	This study
pYJ462	рҮЈ204- <i>DBF4 _{д100-109}</i> R83E	This study
pYJ464	рҮJ204- <i>DBF4 _{Δ100-109}</i>	This study
pYJ466	рҮJ204- <i>DBF4 _{д82-88-д100-109}</i>	This study
pYJ489	pCG60 E101K	This study
pYJ491	pCG60 R103E	This study
pYJ493	pCG60 Q113A	This study
pYJ494	рҮЈ204- <i>DBF4 _{NΔ81-Δ100-109}</i>	This study
pYJ497	рYJ204- <i>DBF4 _{NΔ93-Δ100-109}</i>	This study
pYJ507	pCG60 E108D	This study
pYJ512	pCG60 T138A	This study
pYJ535	pGAD-C1- <i>DBF4</i> 66-227	This study

Table S2 Yeast strains used in this study

Stain	Genotype	Source
PJ69-4A	MAT a trp1-901 leu2-3, -112 ura3-52 his3-200 gal4Δ gal80Δ LYS2::GAL1-HIS3	James et al., 1996
	GAL2-ADE2 met2::GAL7-lacZ	
W303-1A	MAT a ade2-1, ura3-1 his3-11, -15 trp1-1 leu2-3, -112 can1-100 rad5-535	Thomas and Rothstein, 1989
y57	W303 MAT a rad53-R70A sml1Δ::HIS3 RAD5	Pike et al., 2004
y59	W303 MAT a rad53-K227A sml1Δ::HIS3 RAD5	Pike et al., 2004
y205	W303 MAT a rad53-R605A sml1Δ::HIS3 RAD5	Pike et al., 2004
y1853	W303 MAT a sml1Δ::URA3 sld3-38A-10his-13MYC::kanMX4	Zegerman and Diffley, 2010
y2573	W303 MAT a dbf4∆::TRP1 his3::PDBF4-dbf4 4A::HIS3 sld3-38A-10his- 13MYC::kanMX4	Zegerman and Diffley, 2010
M517	W303 MAT a rad53-1	Gabrielse at al., 2006
M895	W303 MAT a dbf4Δ::kanMX6 [pMW490; pRS416-DBF4 URA3]	Gabrielse at al., 2006
M927	W303 MAT a dbf4Δ::kanMX4 3HA-CDC7-TRP1 [pMW490; pRS416-DBF4-URA3]	Gabrielse at al., 2006
M932	W303 MAT a dbf4Δ::kanMX4 3HA-CDC7-TRP1 [pMW489; pRS415-DBF4-LEU2]	Gabrielse at al., 2006
M936	W303 <i>MAT a dbf4Δ::kanMX4 3HA-CDC7-TRP1</i> [pCG10; pRS415-DBF4- <i>NΔ109-</i> <i>LEU2</i>]	Gabrielse at al., 2006
M2864	W303 MAT a dbf4Δ::kanMX4 3HA-CDC7-TRP1 [pCG10; pRS415-DBF4-NΔ94- LEU2]	This study
M1261	W303 MAT a dbf4-N∆109	Gabrielse at al., 2006
M1589	W303 MAT a rad53-1 dbf4Δ::kanMX6 [pMW490; pRS416-DBF4 URA3]	Gabrielse at al., 2006
M1800	W303 MAT1 dbf4-N∆109-kanMX6	Miller et al., 2009
M3581	W303 MAT a rad53Δ::TRP1 sml1Δ::HIS3 dbf4Δ::kanMX6 [pMW490; pRS416- DBF4 URA3]	This study
M3831	W303 MAT a RAD53-3MYC-TRP1	This study
M3890	W303 MAT a dbf4-N∆109-natMX4	This study
M3905	W303 MAT a dbf4-N∆109-natMX4 sld3-38A-10his-13MYC::kanMX4	This study
M3913	W303 MAT a dbf4-N∆109-kanMX6 sml1::HIS3	This study
M3920	W303 MAT α RAD53-3MYC-TRP1 dbf4-NΔ109-kanMX6 sml1Δ::HIS3	This study

Table S3 Peptides used in this study

Peptide name	Peptide sequence	Length	MW
Biotin-Dbf4 (98-113)	Biotin- KNV EPR VTP KEL LEW Q	Biotin + 17	2192.9
Biotin-pDbf4	Biotin- KNV EPR V(pT)P KEL LEW Q	Biotin + 17	2273.2
Dbf4 (98-113)	KNV EPR VTP KEL LEW Q	17	1966.4
pDbf4 (pThr105)	KNV EPR V(pT)P KEL LEW Q	17	2047.5
pDbf4-V104A	KNV EPR A(pT)P KEL LEW Q	17	2019.8
pDbf4-E108A	KNV EPR V(pT)P KAL LEW Q	17	1989.9
pDbf4-E108D	KNV EPR V(pT)P KDL LEW Q	17	2032.7
pDbf4-L109A	KNV EPR V(pT)P KEA LEW Q	17	2005
Biotin-Rad9	IMS EVE LTQ ELP EVE	15	1972.28
Biotin-pRad9	IMS EVE L(pT)Q ELP EVE	15	2052.26
pSpc72	EEF LSL AQS (pS)PA GSQ LES RD	20	2231.3

Supplemental references

- BROOKS, M. A., A. DZIEMBOWSKI, S. QUEVILLON-CHERUEL, V. HENRIOT, C. FAUX *et al.*, 2009 Structure of the yeast Pml1 splicing factor and its integration into the RES complex. Nucleic Acids Res **37**: 129-143.
- CHEN, Y. C., and M. WEINREICH, 2010 Dbf4 regulates the Cdc5 Polo-like kinase through a distinct non-canonical binding interaction. J Biol Chem **285:** 41244-41254.
- DARIEVA, Z., A. PIC-TAYLOR, J. BOROS, A. SPANOS, M. GEYMONAT *et al.*, 2003 Cell cycleregulated transcription through the FHA domain of Fkh2p and the coactivator Ndd1p. Curr Biol **13**: 1740-1745.
- DUROCHER, D., and S. P. JACKSON, 2002 The FHA domain. FEBS Lett 513: 58-66.
- GABRIELSE, C., C. T. MILLER, K. H. MCCONNELL, A. DEWARD, C. A. FOX *et al.*, 2006 A Dbf4p BRCA1 C-terminal-like domain required for the response to replication fork arrest in budding yeast. Genetics **173**: 541-555.
- GOLDSTEIN, A. L., and J. H. MCCUSKER, 1999 Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast **15**: 1541-1553.
- HAMMET, A., B. L. PIKE, K. I. MITCHELHILL, T. TEH, B. KOBE *et al.*, 2000 FHA domain boundaries of the dun1p and rad53p cell cycle checkpoint kinases. FEBS Lett **471:** 141-146.
- HARKINS, V., C. GABRIELSE, L. HASTE and M. WEINREICH, 2009 Budding yeast Dbf4 sequences required for Cdc7 kinase activation and identification of a functional relationship between the Dbf4 and Rev1 BRCT domains. Genetics **183**: 1269-1282.
- JAMES, P., J. HALLADAY and E. A. CRAIG, 1996 Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics **144**: 1425-1436.
- MILLER, C. T., C. GABRIELSE, Y. C. CHEN and M. WEINREICH, 2009 Cdc7p-Dbf4p regulates mitotic exit by inhibiting Polo kinase. PLoS Genet **5**: e1000498.
- PALMBOS, P. L., D. WU, J. M. DALEY and T. E. WILSON, 2008 Recruitment of Saccharomyces cerevisiae Dnl4-Lif1 complex to a double-strand break requires interactions with Yku80 and the Xrs2 FHA domain. Genetics **180**: 1809-1819.
- PIKE, B. L., S. YONGKIETTRAKUL, M. D. TSAI and J. HEIERHORST, 2004 Mdt1, a novel Rad53 FHA1 domain-interacting protein, modulates DNA damage tolerance and G(2)/M cell cycle progression in Saccharomyces cerevisiae. Mol Cell Biol 24: 2779-2788.
- THOMAS, B. J., and R. ROTHSTEIN, 1989 Elevated recombination rates in transcriptionally active DNA. Cell **56**: 619-630.
- WADE, J. T., D. B. HALL and K. STRUHL, 2004 The transcription factor lfh1 is a key regulator of yeast ribosomal protein genes. Nature **432**: 1054-1058.
- ZEGERMAN, P., and J. F. DIFFLEY, 2010 Checkpoint-dependent inhibition of DNA replication initiation by SId3 and Dbf4 phosphorylation. Nature **467:** 474-478.