

Figure S1 The proline catabolism-associated genes are located in a cluster on a single chromosome in *A. nidulans,* however in *S. cerevisiae* and *C. neoformans,* the genes are unlinked and located on different chromosomes. *prnA* encodes the pathway-specific transcription factor of *prn* expression, *prnD, PUT1* and *PUT5* encode proline oxidase, *prnB* and *PUT4* encode the proline-specific permease, while *prnC* and *PUT2* encode P5C dehydrogenase. The multiple candidates of proline permease-encoding genes in *C. neoformans* are designated using the Broad Institute annotations.

YPLAL Put1 L P T G F L L V P K L S A E T E L Put5 L P A G L L L I P V L S A D S D P P G D G S S S L R I A S T F Q L L R T W L V Y S L I S F P G V V D Y S P K I L S I L N N S P L R L P T E W F V R A I P V P T S L T A S T T P E L L R T W F V Y A I I S M P G V V D Y S P T I L N F F I N S P L R G P T E W F V R SAEVDE SQLQGDN THGKEARREREREHR SAEVDE SOLTETGPS-KDERDKREREKK Put1 F V P G E T V E D C I P S L K A Put5 F V A G E T V E G C M P T L K A G D P R E L F A L K G K W Puti A T G F A L K V T G I V D P N V L E R A S Y T L L R L R S L A Q S S S I S I S A P N A P L F V P Y P G T P E S L D C Q V L A R T --Put5 V T G F A L K I T G L I D A N V L E R A S Y T L L R L R P L A K S N S P T A P N T P L F V P Y P G T P E T L D Q Q V V A R T P E D L E V L S D L W Y K L R K I G E K A K E N D V A L I I D A E Y T W Y Q P A L N L E L B Q L W Y K L Q K I G Q K A K E N N I I L Y V D A E H T W Y Q P A L Put1 DDMGVLENDPGL Put5 DDMGVLEKDPGL S E K W N G P L E E I W T G P L Put1 IYGTYQSYLCRQPTHI Put5 IYGTYQSYLCRQPTHI G L K L V R G A Y Y L Q E R K K W G V K L V R G A Y F E O E R K K W TTL DEGRLG Put1 SDQLKSSHPERA Put5 ASQLKSAHPERA NAARFVND MASKFVND 640 Puti G (/ P V A L K Y I A Y G N L E E V M P F L G R R A F E N K S L M S G D (G G A G E R K R V T C E L W R R Y L G G S T <u>S L L P A R A A</u> Puti G (K <u>P V A L K Y M A Y G K L S E V M P Y L G R R A I L E N K S L M S G D</u> H G A A A E M R R V A A E L K R R E F G G S D · · · · · · ·

Figure S2 ClustalW multiple sequence alignment of *C. neoformans* Put1 and Put5. Identical amino acid residues are shaded dark grey while similar residues are shaded light grey.

Figure S3 Cross-species complementation using *C. neoformans PUT2* partially restored the proline utilization ability of the *S. cerevisiae put2* mutant. Tenfold spot dilution assays for nitrogen source utilization showed that *C. neoformans PUT2* complemented the *S. cerevisiae put2* mutant's proline assimilation defect, albeit to a poorer extent than an *S. cerevisiae PUT2*. On the other hand, neither *C. neoformans PUT1* or *PUT5* restored the proline utilization defect of the *S. cerevisiae put1* strain.

Figure S4 Restoration of proline utilization ability upon the re-introduction of *PUT5*, *PUT1 PUT5* and *PUT2* into the *put5* Δ , double *put1* Δ *put5* Δ and *put2* Δ mutants, respectively. Tenfold spot dilution assays for nitrogen or nitrogen and carbon source utilization showed that the complemented *put5* Δ + *PUT5*, *put1* Δ *put5* Δ + *PUT1 PUT5* and *put2* Δ + *PUT2* strains exhibited wild-type growth on YNB supplemented with 10 mM proline (with or without 2% glucose as a carbon source).

A Menadione stress assays

Figure S5 Tolerance against the oxidative stressor menadione and nitrosative stressor sodium nitrite is equivalent between the wild-type and proline oxidase(s) deletion mutant strains. Wild-type H99, $put1\Delta$, $put5\Delta$ and double $put1\Delta$ $put5\Delta$ strains were grown in YNB [proline and glutamate (10 mM each)] supplemented with (A) 0 – 0.003 mM menadione, or (B) 0 – 3 mM sodium nitrite. All strains displayed relatively similar growth percentage relative to the unstressed control when subjected to these individual stressors. Growth percentage relative to unstressed control is defined by dividing each stressed strain's growth in OD₆₀₀ with the same strain's growth in OD₆₀₀ when unstressed. Error bars represent standard errors across three biological replicates.

Figure S6 Restoration of mitochondrial superoxide ions to wild-type levels upon the re-introduction of *PUT2* into the *put2* Δ mutant. Wild-type H99, *put2* Δ and complemented *put2* Δ + *PUT2* strains were briefly subjected to culture in YNB supplemented with 10 mM proline, stained with MitoSOX, and the accumulation of ROS in the mitochondria was assessed by flow cytometry. Bar chart presented as average ± standard error of triplicate experiments showed that the *put2* Δ mutant had significantly enhanced Δ mean fluorescence intensity (Δ MFI) of oxidized MitoSOX relative to the wild-type or *put2* Δ + *PUT2* strains (*** denotes *P* < 0.001). Δ MFI is defined by subtracting the background MFI (unstained cells) from the MFI generated from MitoSOX stained cells.

	DIC	CMXRos	Merge
WT H99	88	o _s o	
put1∆	000	\$0 0	6 00
put5∆	6 ⁰	୍ତ	6
put1∆ put5∆	8	0	8
put2∆	88	8 0 6	<i>8</i> 8

Figure S7 None of the proline catabolic deletion mutants display a defect in mitochondrial membrane potential. Wild-type H99 and proline catabolic deletion mutant strains were briefly subjected to culture in YNB supplemented with 10 mM proline, stained with MitoTracker Red CMXRos, and cells viewed under a confocal microscope. The staining profile of the mutants was similar to that of wild-type showing accumulation of the fluorescence dye that is dependent on normal mitochondrial membrane permeability. Scale bar, 10 µm.

Figure S8 Restoration of virulence factor expression to wild-type levels upon the re-introduction of *PUT2* into the *put2* Δ mutant. (A) Tenfold spot dilution assays on YPD medium demonstrated that the complemented *put2* Δ + *PUT2* strain exhibited wild-type growth at both 30 and 37°C. (B) Tenfold spot dilution assays on L-DOPA medium showed that the *put2* Δ + *PUT2* strain produced equal amount of melanin as the wild-type strain at both 30 and 37°C.

Table S1 Fungal strains used in this study

Strain	Genotype	Original source
H99	Cryptococcus neoformans MATa	John Perfect
EL13	H99 put1::NEO	This study
EL1	H99 put5::NEO	This study
EL9	H99 put1 put5::NEO	This study
EL18	H99 put2::NEO	This study
EL22	H99 put1::NEO + PUT1 NAT	This study
EL20	H99 put5::NEO + PUT5 NAT	This study
EL21	H99 put1 put5::NEO + PUT1 PUT5 NAT	This study
EL23	H99 put2::NEO + PUT2 NAT	This study
BY4741	Saccharomyces cerevisiae MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$	Carrie Brachmann
4099B7	BY4741 put1::KanMX	Thermo Scientific
1000H4	BY4741 put2::KanMX	Thermo Scientific

Table S2 Primers used in this study

Primer	Purpose	Sequence (5'-3')
UQ1070	Cn <i>PUT1</i> qRT-PCR F	AAAAGCTAAAGAGAACGACGTTGC
UQ1071	Cn PUT1 qRT-PCR R	TCTCACTCTTTGACTTTGGAGGTTT
UQ1072	Cn <i>PUT5</i> qRT-PCR F	AGAAGGCTAAGGAGAACAACATCATT
UQ1073	Cn <i>PUT5</i> qRT-PCR R	GTCCAGATCTCCTCCTTGGAAG
UQ1074	Cn <i>PUT2</i> qRT-PCR F	TCATTAACGGTGAGGAGGTCAAG
UQ1075	Cn <i>PUT2</i> qRT-PCR R	GCAAGAGCACCGTCAATGG
UQ1300	Cn PUT1 deletion 5' F / genomic DNA generation F	CTGCCATGTACAATCCATAAT
UQ1301	Cn PUT1 deletion 5' R	CTCTCCAGCTCACATCCTCGCAGCGCGATTTCGTTA
UQ1302	Cn PUT1 deletion 3' F	TGTTAATACAGATAAACCGTTGGTTCAAGATACTTT
UQ1303	Cn PUT1 deletion 3' R / genomic DNA generation R	TCTCTACATTACGCAACATGG
UQ1304	Cn PUT1 deletion NEO F	TAACGAAATCGCGCTGCGAGGATGTGAGCTGGAGAG
UQ1305	Cn PUT1 deletion NEO R	AAAGTATCTTGAACCAACGGTTTATCTGTATTAACA
UQ1306	Cn PUT5 deletion 5' F / genomic DNA generation F	GCACGCCTTCCGAAGTGAAAG
UQ1307	Cn PUT5 deletion 5' R	AGCTCACATCCTCGCAGCCGTTGTGGATCGTTGGTT
UQ1308	Cn PUT5 deletion 3' F	TGTTAATACAGATAAACCAACGCTTAAGTGGAGATG
UQ1309	Cn PUT5 deletion 3' R / genomic DNA generation R	CCTCGTTCGGCTAAAGCTGAC
UQ1310	Cn PUT5 deletion NEO F	CAACCAACGATCCACAACGGCTGCGAGGATGTGAGC
UQ1311	Cn PUT5 deletion NEO R	CATCTCCACTTAAGCGTTGGTTTATCTGTATTAACA
UQ1312	Cn PUT2 deletion 5' F / genomic DNA generation F	CTCCGGTGTCCATTATTCCTA
UQ1313	Cn PUT2 deletion 5' R	AGCTCACATCCTCGCAGCTTTTGGTAAGGATGAAGA
UQ1314	Cn PUT2 deletion 3' F	TGTTAATACAGATAAACCGTCAATGAGAATAGAAAA
UQ1315	Cn PUT2 deletion 3' R / genomic DNA generation R	TTCTGACGGTGCAGGCGAAGA
UQ1316	Cn PUT2 deletion NEO F	TCTTCATCCTTACCAAAAGCTGCGAGGATGTGAGCT
UQ1317	Cn PUT2 deletion NEO R	TTTTCTATTCTCATTGACGGTTTATCTGTATTAACA
UQ1036	Universal deletion diagnostic (NEO marker specific) R	TGTGGATGCTGGCGGAGGATA
UQ1410	Cn PUT1 deletion diagnostic F	AAACGCTTAAGTGGAGATGAA
UQ1411	Cn PUT5 deletion diagnostic F	AGGCTGAAGATGATGCGAGAA
UQ1412	Cn PUT2 deletion diagnostic F	CGATGACAGCCGATACCTACA
UQ18	Sequencing (M13F pCR2.1-TOPO)	GTAAAACGACGGCCAG
UQ19	Sequencing (M13R pCR2.1-TOPO)	CAGGAAACAGCTATGAC
UQ1594	Cn PUT1 genomic DNA sequencing	GCTGTTCCGAAAGCTACCAGA
UQ1595	Cn PUT1 genomic DNA sequencing	CCTCCTCGTCCTCTGGTTCT
UQ1596	Cn PUT1 genomic DNA sequencing	TGGCGTTGGAAAAGAGCGGAG
UQ1597	Cn PUT1 genomic DNA sequencing	AAAGAGAACGAGTAGACACAT
UQ1598	Cn PUT1 genomic DNA sequencing	GCGTCATTTTCGGTACTCACA
UQ1599	Cn PUT1 genomic DNA sequencing	AACTTGATTTCATTCGTGCTC
UQ1600	Cn PUT5 genomic DNA sequencing	TCCCCTGCTATTTTTTTTCGT
UQ1601	Cn PUT5 genomic DNA sequencing	GACAACTCCTTTTCGACAACC
UQ1602	Cn PUT5 genomic DNA sequencing	TGAAACCGTGGAGGGATGTAT
UQ1603	Cn PUT5 genomic DNA sequencing	GAAGGGCAAGTGGGATGACAT
UQ1604	Cn PUT5 genomic DNA sequencing	CATACAACACGCCGAAGCCAA
UQ1605	Cn PUT5 genomic DNA sequencing	GGCGGCAGAGATGAGGCGAGT
UQ1606	Cn PUT2 genomic DNA sequencing	TGGGTGTTGAAGATTTGGTCG

UQ1607	Cn PUT2 genomic DNA sequencing	ACCAAAAATGTCTTCCCAACT
UQ1608	Cn PUT2 genomic DNA sequencing	GCCGAAATCGACGCTGCCGCT
UQ1609	Cn PUT2 genomic DNA sequencing	CCCAAAACCTCGACATCTACA
UQ1610	Cn PUT2 genomic DNA sequencing	TACGCTTTTCATTTCCGGCCT
UQ1611	Cn PUT2 genomic DNA sequencing	AGCGATTAGGGTTTACGACAT
UQ1612	Cn PUT2 genomic DNA sequencing	AGAAGAAGAAGTCAGTCAGCA
UQ270	GenomeWalker adaptor	GTAATACGACTCACTATAGGGC
UQ271	GenomeWalker nested adaptor	ACTATAGGGCACGCGTGGT
UQ272	GenomeWalker 3' gene specific	CTGAATGGCGAATGAGCTTGAGCTTGG
UQ273	GenomeWalker 3' nested gene specific	ATCAGATTGTCGTTTCCCGCCTTCAG
UQ274	GenomeWalker 5' gene specific	GAGAGGCGGTTTGCGTATTGGCTAGAG
UQ275	GenomeWalker 5' nested gene specific	ACGTCCGCAATGTGTTATTAAGTTGTC
UQ1719	Sc PUT1 genomic DNA / promotor generation F	AGACAAAACTGAGCGAGACAG
UQ1756	Sc PUT1 genomic DNA / terminator generation R	GCACCTACACTAACAGCTTCT
UQ1729	Sc PUT2 genomic DNA / promotor generation F	TCACCGCATCGTTCAACTGTC
UQ1760	Sc PUT2 genomic DNA / terminator generation R	TGCAATGCCAAAAGTGTCTGT
UQ1720	Cn PUT1 cDNA generation F	GGCATCCCATCCATACAACCTCTAGATTTTAGACA
UQ1761	Cn PUT1 cDNA generation R	GACCAAAGTATCTTGAACCAA
UQ1725	Cn PUT5 cDNA generation F	CACTAACGCACGCTAGAAATGTCAGCAATCCGACC
UQ1762	Cn PUT5 cDNA generation R	TTAATCAGAGCCTCCAAAGAA
UQ1730	Cn PUT2 cDNA generation F	AATTCACAGGAATTGCTTTTCTTCTTCATCCTTA
UQ1763	Cn PUT2 cDNA generation R	GATACGAGACATTATGTATGA
UQ1814	Sc PUT1 promotor generation R for Cn PUT1	GCGGGAGGCACGCATTTCTAGCGTGCGTTAGTGTT
UQ1758	Sc PUT1 promotor generation R for Cn PUT5	GGTCGGATTGCTGACATTTCTAGCGTGCGTTAGTG
UQ1815	Sc PUT1 terminator generation F for Cn PUT1	CAAGATACTTTGGTCGAGGACTATAATATATACTC
UQ1728	Sc PUT1 terminator generation F for Cn PUT5	AGATTCTTTGGAGGCTCTGATTAAGAGGACTATAA
UQ1759	Sc PUT2 promotor generation R for Cn PUT2	TAAGGATGAAGAAAGAAAAGCAATTCCTGTGAATT
UQ1816	Sc PUT2 terminator generation F for Cn PUT2	ATGTCTCGTATCAAAAATTTTTGTGGAATAGAACC
UQ1770	Sc PUT1 genomic DNA sequencing	CAGCTATGACCATGATTACGC
UQ1769	Sc PUT1 genomic DNA sequencing	GTCGCTACACGTACATTGC
UQ1818	Sc PUT1 genomic DNA sequencing	AGTGAAGGTGAAAGCGAGGCA
UQ1771	Sc PUT1 genomic DNA sequencing	CGCCACTCATCAATTGTTTAT
UQ1772	Sc PUT1 genomic DNA sequencing	TCCAAAAGCTCCTTATTAGTT
UQ1819	Sc PUT1 genomic DNA sequencing	ACAACATCCTACTGCCCAATA
UQ1773	Sc PUT1 genomic DNA sequencing	ATGAATATAAGCACCACGAAC
UQ1774	Sc PUT1 genomic DNA sequencing	TCACTTGGTTGTCGCCTCTCA
UQ1775	Sc PUT1 genomic DNA sequencing	AAGATTTCCGTTTGAACTAGC
UQ1776	Sc PUT2 genomic DNA sequencing	ATGACCATGATTACGCCAAGC
UQ1777	Sc PUT2 genomic DNA sequencing	AAGATGGCAAGGGATATGTTT
UQ1778	Sc PUT2 genomic DNA sequencing	CATATCCCTTGCCATCTTCAC
UQ1820	Sc PUT2 genomic DNA sequencing	GACTTTCTCAGTAGGGGTAGA
UQ1779	Sc PUT2 genomic DNA sequencing	AAACCTTCACAAACCGCTGCC
UQ 1821	Sc PUT2 genomic DNA sequencing	CCATGGATATACTTCTGGAGT
UQ1780	Sc PUT2 genomic DNA sequencing	AGCCTTATCGTCGGTACCACT
UQ1822	Sc PUT2 genomic DNA sequencing	GCCACTTTGTATTTTGCCATA
UQ1781	Sc PUT2 genomic DNA sequencing	GGCGAGCAGTCCCTGACAAGA

UQ1782	Sc PUT2 genomic DNA sequencing	TTCCACATGGCAAAGAATAAA
UQ1595	Cn PUT1 cDNA sequencing	CCTCCTCGTCCTCTGGTTCT
UQ1596	Cn PUT1 cDNA sequencing	TGGCGTTGGAAAAGAGCGGAG
UQ1598	Cn PUT1 cDNA sequencing	GCGTCATTTTCGGTACTCACA
UQ1601	Cn PUT5 cDNA sequencing	GACAACTCCTTTTCGACAACC
UQ1602	Cn PUT5 cDNA sequencing	TGAAACCGTGGAGGGATGTAT
UQ1603	Cn PUT5 cDNA sequencing	GAAGGGCAAGTGGGATGACAT
UQ1604	Cn PUT5 cDNA sequencing	CATACAACACGCCGAAGCCAA
UQ1605	Cn PUT5 cDNA sequencing	GGCGGCAGAGATGAGGCGAGT
UQ1607	Cn PUT2 cDNA sequencing	ACCAAAAATGTCTTCCCAACT
UQ1608	Cn PUT2 cDNA sequencing	GCCGAAATCGACGCTGCCGCT
UQ1609	Cn PUT2 cDNA sequencing	CCCAAAACCTCGACATCTACA
UQ1611	Cn PUT2 cDNA sequencing	AGCGATTAGGGTTTACGACAT

Table S3 Plasmids used in this study

Plasmid	Detail	Original source
pJAF1	NEO selectable marker in pCR2.1-TOPO	James Fraser
pCH233	NAT selectable marker in pCR2.1-TOPO	Christina Hull
pELYL1	H99 PUT1 genomic DNA including promotor and terminator in pCR2.1-TOPO	This study
pELYL2	H99 PUT5 genomic DNA including promotor and terminator in pCR2.1-TOPO	This study
pELYL4	H99 PUT1 PUT5 genomic DNA including promotor and terminator in pCR2.1-	This study
	ТОРО	
pELYL3	H99 PUT2 genomic DNA including promotor and terminator in pCR2.1-TOPO	This study
pELYL5	H99 PUT1 genomic DNA including promotor and terminator in pCH233	This study
pELYL6	H99 PUT5 genomic DNA including promotor and terminator in pCH233	This study
pELYL8	H99 PUT1 PUT5 genomic DNA including promotor and terminator in pCH233	This study
pELYL7	H99 PUT2 genomic DNA including promotor and terminator in pCH233	This study
YCplac111	YC-type (centromeric) shuttle vector with LEU2 and ampR markers	Daniel Gietz
pEWC38	H99 PUT1 cDNA in pCR2.1-TOPO	This study
pEWC39	H99 PUT5 cDNA in pCR2.1-TOPO	This study
pEWC37	H99 PUT2 cDNA in pCR2.1-TOPO	This study
pEWC45	H99 PUT1 cDNA flanked by BY4741 PUT1 promotor and terminator in	This study
	pCR2.1-TOPO	
pEWC46	H99 PUT5 cDNA flanked by BY4741 PUT1 promotor and terminator in	This study
	pCR2.1-TOPO	
pEWC40	H99 PUT2 cDNA flanked by BY4741 PUT2 promotor and terminator in	This study
	pCR2.1-TOPO	
pEWC35	BY4741 PUT1 genomic DNA including promotor and terminator in pCR2.1-	This study
	ТОРО	
pEWC36	BY4741 PUT2 genomic DNA including promotor and terminator in pCR2.1-	This study
	ТОРО	
pEWC48	H99 PUT1 cDNA flanked by BY4741 PUT1 promotor and terminator in	This study
	YCplac111	
pEWC49	H99 PUT5 cDNA flanked by BY4741 PUT1 promotor and terminator in	This study
	YCplac111	
pEWC47	H99 PUT2 cDNA flanked by BY4741 PUT2 promotor and terminator in	This study
	YCplac111	
pEWC50	BY4741 PUT1 genomic DNA including promotor and terminator in	This study
	YCplac111	
pEWC51	BY4741 PUT2 genomic DNA including promotor and terminator in	This study
	YCplac111	