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ABSTRACT

The steady state solutions of two mathematical models are
used to evaluate Munch's pressure-flow hypothesis of phloem
translocation. The models assume a continuous active loading
and unloading of translocate but differ in the site of loading
and unloading and the route of water to the sieve tube. The
dimensions of the translocation system taken are the average
observed values for sugar beet and are intended to simulate
translocation from a mature source leaf to an expanding sink
leaf. The volume flow rate of solution along the sieve tube,
water flow rate into the sieve tube, hydrostatic pressure, and
concentration of sucrose in the sieve tube are obtained from a
numerical computer solution of the models. The mass transfer
rate, velocity of translocation, and osmotic and hydrostatic
pressures are consistent with empirical findings. Owing to the
resistance to water flow offered by the lateral membranes, the
hydrostatic pressure generated by the osmotic pressure can be
considerably less than would be predicted by the solute concen-
tration. These models suggest that translocation at observed
rates and velocities can be driven by a water potential differ-
ence between the sieve tube and surrounding tissue and are
consistent with the pressure-flow hypothesis of translocation.

The generation of sufficient hydrostatic pressure to over-
come the resistance to solution flow offered by the sieve tube
and sieve plates remains a central problem in the considera-
tion of Munch's pressure-flow hypothesis as the mechanism of
translocation in the phloem. The hydrostatic pressure avail-
able to drive solution flow has been estimated from the con-
centration of solutes in sieve tube sap (22, 25). However, owing
to resistance to water flow offered by the membranes be-
tween the sieve tube and surrounding tissue, the hydrostatic
pressure in the sieve tube could be considerably less than the
osmotic pressure predicted on the basis of sieve-tube-sap solute
concentration.
A number of mathematical models have been formulated to

describe translocation in the phloem (7, 9, 11, 17; see Reference
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4 for review). However, most of these models have been con-
cerned solely with the movement of radioactive tracers (2, 9,
11) and have not dealt with the osmotic and hydrostatic pres-
sures in sieve tubes or the movement of water into and
through sieve tubes. A recent attempt to quantify these aspects
of the translocation process (8) failed to deal realistically with
sieve tube anatomy, including the dimensions of the sieve
tube, and ignored the presence of sieve plates. In addition,
translocation is a continuous process, and a model attempting
to simulate translocation should include continuous loading
and unloading of translocate.

This paper describes two mathematical models based on
irreversible thermodynamics that attempt to quantify the
pressure-flow hypothesis of phloem translocation. These models
can be used to predict the osmotic and hydrostatic pressure
required to drive solution flow in sieve tubes and to evaluate
the pressure-flow hypothesis as a plausible mechanism of
translocation.

DESCRIPTION OF THE MODELS

Two models will be considered. In model I, sucrose is
assumed to be actively loaded directly into the sieve tube
and unloaded from the sieve tube (Fig. 1). In model II, ac-
cumulation and unloading are assumed to be accomplished by
specialized phloem parenchyma cells adjoining the sieve tube,
with free movement of solution between these cells and the
sieve tube (Fig. 2). The translocation pathway is composed of
three regions of equal length: a source region, a path region,
and a sink region (Fig. 1). The basic model in both cases con-
sists of a single sieve tube divided into sieve tube elements
by sieve plates (Fig. 3) and surrounded by a reservoir the water
potential of which (f&) is -3 atm. The main difference between
models I and II arises from the different membrane areas
through which water can enter and leave the translocation
pathway. The equations derived below apply to both models I
and II.

The assumptions basic to the models are as follows: (a)
Sucrose is actively loaded in the source region and actively
unloaded in the sink region. In the path region loading and
unloading of sucrose do not occur. (b) Flow both into and
down the sieve tube can be described by linear equations in-
volving hydrostatic and osmotic pressure gradients. The flow
of water and solution in the models is passive, in that input of
metabolic energy occurs only during active loading and unload-
ing of sucrose. (c) The pores of the sieve plates are open (1, 5;
Fisher, personal communication) and the conductance of each
plate and the sieve-tube element can be calculated from
Poiseuille's equation (18). (d) The reflection coefficient (a) for
sucrose was assumed to be unity for the lateral membrane and
zero for the sieve plate.

The basic equation from irreversible thermodynamics for
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FIG. 1. Diagram depicting the sieve tube of Model I and the re-
lationship of the source, path, and sink regions. Although it appears
in this diagram that the sieve tube radius changes linearly in the
source and sink region, in fact, it is the cross-sectional area which
changes linearly with distance.
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FIG. 2. Diagram depicting Model II and the relationship between
the sieve tube, specialized parenchyma cells, and companion cells.
Although it appears in this diagram that the sieve tube radius
changes linearly in the source and sink region, in fact, it is the cross-
sectional area which changes linearly with distance.
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FIG. 3. Diagram of sieve tube element showing the computed
variables and the relationship of the it' element to the i + 1 and i -
1 elements.

volume flux, J (cm'cm-'sec-1), across a membrane is

J = Lp(AP - n) (1)

where P is hydrostatic pressure in atm, ,. is osmotic pressure
in atm, L, is the membrane conductivity in cm' cm-2sec-'atm-1,
and rf is the reflection coefficient for the solute (21). Since
a for sucrose is assumed to equal 1.0 for the lateral mem-
branes, the flux of water from the reservoir into the ith sieve
tube element (Fig. 3) is given by

JWi = Lp(o- Pi + CiRT) (2)

where +o is the water potential in the reservoir; P, and C, are

the hydrostatic pressure and sucrose concentration, respec-
tively, in the ith sieve tube element; R is the gas constant; and
T is the absolute temperature. The volume flux of the solu-
tion down the tube, from the ith element to the i + 1 element
(Fig. 3), is given by

J,i = Ls(Pi- Pi+,) (3)

assuming that v = 0 and L8 is the conductivity of the sieve
tube and plate.

Since water must be conserved, we have

Js._,(l - aCeCDA)A8-_ + J .Ap. = Ji(l - aCi)As. (4)

where aC is the fraction of solution volume occupied by
sugar, Asi is the sieve tube cross-sectional area in cm2, and
Api is the lateral membrane surface area in cm2 of the ith sieve
tube element. By combining equations 2, 3, and 4, the hydro-
static pressure in the ith element can be calculated:

LpApj(4o + CiRT)
p + LA4i_,(1- aCj_i)Pi_j + L.A.i( -aCi)Pi+i (5)

LpApi + L8A8j_,(1 - aCi1) + L,A,j(l -aCei)
the concentration in the ith element is given by

(ri + Jsj_jCj_jA8j_1 - JsjCjA,j)..t(6I Ci(t + ,At) = ci(t) + (r 8_C_A8_-8CAit (6evi

where r is the loading rate in jug sec-', t is time in sec, and V
is volume in cm3.
A steady state solution of equations 2, 3, 4, 5, and 6 was found

by iterative numerical solution employing a Fortran program
on an IBM 360 computer. Values for the constants Lp, L., and
r were set as described below. Starting with zero or low values
for the variables, J = 0, J, = 0, P = 0 and C = 5 X 104
,ug of sucrose mh (5%, w/v) in the source region, new values
for C were calculated from equation 6. New values for the
other variables were calculated using equation 5 for P, equa-
tion 3 for J., and equations 2 and 4 for J,,. This process was
repeated many times, resulting in an asymptotic approach of
the variables to their steady state values. When the transloca-
tion rate into the sink region is greater than 98% of the total
loading rate (1.63 X 10-3 yg of sucrose sec-'), additional com-
putations result in insignificant changes in the variables, which
are very close to their steady state values. No physiological
significance can be attached to the variables during the ap-
proach to steady state because of the approximate nature of
the calculations during that period. Therefore, although time
is a variable in equation 6, only the time-independent steady
state values can be considered as physiologically significant.

The dimensions of the translocation system taken are
average observed values for sugar beet (12, 20) and are in-
tended to simulate translocation from a mature source leaf to
an expanding sink leaf. The length of the sieve tube elements
are 200 ,tm; and the cross-sectional area increases in linear
steps from 3.14 /Im2 to 78.5 Mum2 in the source, remains a con-
stant 78.5 MIm2 in the path, and decreases from 78.5 PLm2 to
3.14 ,Um2 in the sink (Figs. 1 and 2). The changes in cross-
sectional area within the sink and source regions are based on
Fisher's (11) observation of a linear relationship between leaf
area and the cross-sectional area of the phloem servicing that
leaf area. Geiger and Cataldo (12) found that 70 cm of minor
vein serviced 1 cm2 of sugar beet source leaf. Assuming that
a petiole of sugar beet contains 350 sieve tubes (12), approxi-
mately 7 sieve tubes would service 1 cm2 of a 50 cm2 source
leaf, or 10 cm of minor vein per sieve tube. In this model the
source, path, and sink regions are each comprised of 480
sieve tube elements and are 9.6 cm long.

If the sieve tube elements are 200 Mum long and 1 cm2 of
source leaf is serviced by 70 cm of minor vein (12), then there
are 3500 sieve tube elements per cm2 of source leaf. A trans-
location rate of 0.71 ug of sucrose min-' cm-2 of source leaf
(3) yields a loading rate of 3.4 X 10- jMg sec-' per sieve tube
element. This value is used as the loading rate for each sieve
tube element in the source region with a total loading rate of
1.63 X 103 tg sec'.
At the beginning of a computer solution the unloading rate

was equal to 10% of the sugar in each sieve tube element per
second. This was done only to minimize the time needed for
reaching steady state and to prevent extreme fluctuations in
the variables during computer computations; no physiological
significance is implied by this condition. As the solution ap-
proached steady state, the unloading rate per sieve tube ele-
ment in the sink was set equal to the loading rate per sieve
tube element in the source, as is assumed to be the case at
steady state.
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In sugar beet, the average sieve plate pore diameter is
0.2 Mm, with a plate thickness of 0.4 Mum, and the total pore
area is approximately 50% of the plate area (Geiger and
Cataldo, unpublished data). Assuming a 15% sucrose solu-
tion (viscosity = 1.40 X 10' poise at 25 C), Poiseuille's equa-
tion (see Horwitz [18] for justification) yields a L, for the
sieve plate of 11.23 cm sec' atm-'. In the path region, a sieve
tube cross-sectional area of 78.5 Mm2 (diameter of 10 um) and
a sieve tube element length of 200 um gives a L. for the sieve
tube element exclusive of sieve plates of 112.3 cm sec' atm'.
Combining the L. values for the sieve tube and plate results
in a total L. for the sieve tube element of 10.2 cm sec' atm'
(see "Appendix"). As the cross-sectional area of the sieve tube
(Aa) changes in the source and sink region, L. of the sieve
plate remains constant (assuming constant pore size and cover-
age), while L. of the sieve tube changes with A.. Since the
sieve tube L. is much greater than the sieve plate L,, except
at the extreme ends of the system, the total L, for the sieve tube
element is assumed to be constant. Thus, L, remains constant
for the entire translocation system and L.A. for each sieve
tube element is directly proportional to A, in the computer
solution of the model. Modifying the model to include the
effect of A. on the sieve tube L. results in insignificant changes
in the calculated variables. However, this is true only because
of the particular range of parameters used. With a larger range
of A, values or a smaller sieve tube L. to sieve plate L, ratio,
total L, could not be held constant in the source and sink
regions.

Preliminary solutions with a small system indicated that the
computer time required to obtain a steady state solution of
this system increases with the square of the number of ele-
ments. To conserve computer time, the 1440 elements of the
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translocation system are divided into 120 sections with each
section representing a series of 12 sieve tube elements. In ef-
fect, then, each section becomes a large sieve tube element
with a L, value and volume 12 times the Lp value and volume
of the individual elements and L, value 42 the average L, value
of the individual elements. Studies showed that the results of
this system are in full agreement with a system of individual
elements.

APPLICATION OF THE MODELS

Model I. Sucrose Loaded Directly into the Sieve Tube.
Values for the volume flow rate of solution down the sieve
tube (J,sA,,), of water flow rate into the sieve tube elements
VJsIA,), and of P and C obtained from a steady state solution
of model I are plotted as a function of distance along the
translocation system (Fig. 4). The value of L, is assumed to be
5 x 10-7 cm sec' atm-' and L, is 10.2 cm sec' atm-'. The
osmotic and hydrostatic pressure gradients calculated for the
path region are 12.0 and 7.1 atm m', respectively, and the
velocity (where velocity = volume flow rate/A.i) at the center
of the path is 0.9 cm min'.

In the source region the volume flow rate along the sieve
tube increases as more sugar and water enter the sieve tube
(Fig. 4C). This increase would also occur in a plant, with the
rate and amount of increase dependent on the branching of
the minor vein in the source leaf. In the sink region the flow
rate decreases as water and solute leave the sieve tube. Note
that the velocity increases continually along the sieve tube
(Fig. 4C). In the sink region, the cross-sectional area decreases
faster than the volume flow rate, resulting in an increase in
velocity.

E
E
-

5
0

0

0
-J

z
4

F-

DISTANCE ALONG SIEVE TUBE (cm)

FIG. 4. Results of a steady state solution of Model I, assuming 4 = 5.0 X 1077 cm sec' atm-' and L. = 10.2 cm sec7l atm-1. C: volume
flow rate down the sieve tube ( ) and velocity of the translocation stream (---); D: positive values indicate flow into the sieve tube and nega-
tive values indicate flow out of the sieve tube.
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At the transition from loading in the source to no loading
along the path, and then to unloading in the sink, marked
changes occur in the concentration and volume flow rates into
and along the sieve tube (Fig. 4, C and D). These changes
would also be expected to occur in a plant depending on how
sharp the transition is between the source, path, and sink and
the unloading rate, if any, in the path.

Of the constants used to characterize the model, L4 is the
most difficult to obtain satisfactory values for, but one of the
most important in terms of its effects on the translocation
system. For this reason, several solutions were obtained for
model I with values of L, ranging from 1 X 10-7 to 5 x 10-6
cm sec' atm' (Fig. 5). An increase in L4 facilitates the influx
of water into the sieve tube, thus decreasing the sugar con-
centration. Since at steady state the translocation rate (i.e.,
amount of sucrose translocated per unit time) is constant,
compensatory changes must occur in the velocity and concen-
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FIG. 5. Some important translocation parameters from steady

state solutions of Model I as a function of lateral-membrane con-

ductivity. The osmotic- (0) and hydrostatic-pressure gradients

(0) in the path region, velocity (A), and concentration (K>) at the

center of the path, and translocation rate (V); L, = 10.2 cm secad
atm-".

tration (i.e., velocity X area X concentration = constant). The
increase in velocity at higher L4 values must be effected by an
increase in the hydrostatic pressure gradient. As L4 increases,
the difference between the osmotic pressure gradient and the
hydrostatic pressure gradient decreases, because the required
water potential difference across the lateral membrane is re-

duced.
A number of variables may affect the value of L,. For ex-

ample, L. wiUl be affected by the sieve pore radius, the number
of pores per sieve plate, and the number of sieve plates per
unit length of sieve tube; and it might change sharply with
callose deposition. To evaluate these effects on the behavior
of the model, L. was varied over a range of 5.1 to 20.4 cm
sec-1 atm' (Fig. 6). An increase in L, permits a higher flow
rate down the sieve tube, resulting in compensatory changes in
the velocity and concentration. Note that, although the velocity
increases, there is still a decrease in the required pressure
gradients (Fig. 6). As L, increases, with L4 constant, the hy-
drostatic pressure gradient required to move the solution down
the tube at a given velocity decreases, but the water potential
difference across the lateral membrane required to move a
given amount of water into the sieve tube remains constant.
Thus, as L. increases, both the hydrostatic and osmotic pres-
sure gradients decrease, with the difference between the gradi-
ents approximately constant-but not quite, since there is an
increase in the volume of solution moving down the sieve tube
(Fig. 6). Except for the behavior of the pressure gradients, the
model behaves in a qualitatively similar manner to an in-
crease in either L. or L.

Model II. Sucrose Loaded Iniially into Parenchyma Cells.
Using microautoradiography, several investigators (12, 23;
Fisher, unpublished data) have demonstrated an accumulation
of "C-photosynthate in pairs of specialized parenchyma cells
immediately adjacent to the sieve tubes in minor veins. Geiger
et al. (13) proposed that these specialized parenchyma cells
could actively accumulate translocate followed by solution
flow through the plasmodesmata from the specialized paren-
chyma cells to the sieve tube. To evaluate a loading mechanism
of this type, model I was modified to include two companion
cells in the source region and one companion cell in the path
region (20) (Fig. 2). Because of a lack of data concerning the
contact area and number and frequency of plasmodesmata
between the specialized parenchyma cell and sieve tube ele-
ment, the conductivity (L,) between these two cells is set at in-
finity and the values of pressure and concentration are identical
in both. This would not be an unreasonable assumption, since
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FIG. 6. Osmotic (0) and hydrostatic pressure gradients ([o) in the path region, velocity (A) and concentration (K) at the center of the
path, and translocation rate (V) as a function of sieve tube conductivity. Values are from steady state solutions of Model I, assuming Lp4
5.0 X 10- cm sec7l atm-1.

534 Plant Physiol. Vol. 52, 1973



MATHEMATICAL MODEL OF TRANSLOCATION

E
. 8

cr.cL

0r.

4

_O

I-

0-

b

z 12
0

4

z

z0
0 4

0
o

O 24.0 28. 0 4.8
DISTANCE ALONG SIEVE TUBE (cm)

C

E

1.6 E
_

1.2 0
-J
w

0.800
4
0
0

0.4
z
4

I -

FIG. 7. Results of a steady state solution of Model II, assuming L4 = 2.2 X 107 cm sec-' atm7' and L. = 10.2 cm sec-' atm-'. B: the
volume flow rate down the sieve tube (-) and velocity of the translocation stream (-), D: positive values indicate flow into the sieve tube
and negative values indicate flow out of the sieve tube.

Lp for the lateral membrane of the specialized parenchyma
cells would presumably be less than L4 for the plasmodesmata
(24).

Values for volume flow rate into and along the sieve tube
and the pressure and concentration from the steady state solu-
tion of model II are not significantly different from the values
obtained with model I (Figs. 4 and 7). However, the increase
in lateral area presented to the bathing solution in model II
required a Lp of 2.2 X 10-7 cm sec' atm' for the solution
shown in Figure 7, which is somewhat lower than the L, used
for the solution of model I shown in Figure 4. The osmotic
and hydrostatic pressure gradients calculated for the path
region were 16.3 and 8.6 atm m', respectively, assuming a L.
value of 10.2 cm sec' atm-1. Note that in the solution of model
II shown in Figure 7 more water is entering the sieve tube than
in model I (Fig. 4), resulting in a higher velocity and a higher
rate of increase in the velocity as compared to model I.
A further comparison of model I to II can be obtained by

comparing the models at the same L, value of 5.0 X 10' cm
sec-' atm-1 (Figs. 5 and 8). As a result of the higher Ap, the
velocity and hydrostatic pressure gradient are higher and the
concentration and osmotic pressure gradient are lower in model
II than in model I. In addition, model II appears to be less
sensitive to changes in L4 than model I (Figs. 5 and 8). When
L, is varied, similar results are obtained from both models
(Figs. 6 and 9).
An analysis of the relationship between the osmotic and hy-

drostatic pressure gradients and L, and L. can be obtained from
Figures 10 and 11. At a constant L, an increase in L. has
little effect on the difference between the hydrostatic and
osmotic pressure gradients. However, with a constant L,, an

0 0 0 2 3 4 5 6 7
LATERAL MEMBRANE CONDUCTIVITY (Lp,cm secl atmr1 x 17 )

0

FIG. 8. Osmotic (0) and hydrostatic (0) pressure gradients in
the path region, velocity (Ax) and concentration (O) at the center
of the path, and translocation rate (V) as a function of lateral-
membrane conductivity. Values are from steady state solutions of
Model II, assuming L, = 10.2 cm sec- atm11.
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assuming L, = 5.1 cm sec-1 atm-1 ( ), L. = 10.2 cm sec' atm'
(-), and L, = 20.4 cm sec-1 atm-l ( -

increase in L4 increases the hydrostatic pressure gradient
(owing to the increase in velocity) while decreasing both the
osmotic pressure gradient and the difference between the
osmotic and hydrostatic pressure gradients (Figs. 10 and 11).
Thus, the osmotic pressure gradient must be sufficient to over-
come the resistance of the lateral membranes, sieve tube, and
sieve plates, while the hydrostatic pressure gradient must be
sufficient to overcome only the resistance of the sieve tube
and sieve plates.

DISCUSSION

The results of the steady state solution of models I and II
can be compared to empirical data to determine if the models
adequately describe translocation in sieve tubes. It is evident
from Table I that the translocation parameters predicted by
the models are consistent with experimental findings. The hy-
drostatic pressure gradient in model I varied from 4 to 12 atm
m1 with a L4 of 1.0 X 10- to 5 X 10 cm sec' atm' and in
model II varied from 3.5 to 12 atm m' with a L. of 2.2 X

0 1 2 3 4 5 6 7
LATERAL MEMBRANE CONDUCTIVITY (Lp,cm sec- atm1 x 107)

FIG. 11. Osmotic pressure gradient (0) and hydrostatic pres-
sure gradient (0) in the path region as a function of lateral-mem-
brane conductivity. Values are from steady state solutions of Model
II, assuming L, = 5.1 cm sec1 atml ( ), L. = 10.2 cm sec-1
atmiw (---), and L. = 20.4 cm sec-1 atm-1 (- - ).

10' to 7.0 X 10' cm sec' atm1 (L. = 10.2 cm sece atm-1).
Hammel (17) found a consistent but low hydrostatic pressure
gradient in red oak. However, his measurements were made
late in the growing season under questionable conditions for
translocation and with senescence underway in the leaves. It is
significant that the sieve tubes in both models have approxi-
mately the same dimensions as those found in sugar beet and
function as a steady state translocation system with continual
loading and unloading of sucrose.

The L, values reported from plant cells vary depending on
the methods used in their determination and the type of tissue
studied. Dainty and Hope (6) reported a value of 9.3 X 0I cm
sec' atm1 for Chara australis. Tyree (24) calculated an L,
value from an earlier membrane study of 9.2 X 10' cm sec-1
atmn1 for Salvinia aureculata. Considering the experimental
difficulties in determining L, and the assumptions made in
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the models, the range of Lp values used in models I and II
appear reasonably consistent with empirically determined
values. The additional resistance to water flow offered by the
lateral membranes has not been considered in previous esti-
mates of the resistance to water movement in the translocation
system. The obvious importance of Lp in phloem translocation
warrants further study of L, values of sieve tubes and phloem
parenchyma.
An important question concerning the pressure flow hypoth-

esis has been the generation of sufficient hydrostatic pressure
to overcome the resistance to solution flow. Eschrich et al. (8)
reported that solution flow occurred in tubular semipermeable
membranes in the absence of a hydrostatic pressure gradient
and have proposed the term "volume flow" to describe the
movement of solution in this system and in sieve tubes. Their
intent in doing this was to focus attention on the site of energy
input for driving solution flow. The emphasis on this point is
perhaps justified, but their use of a new term to describe
Munch's hypothesis (as subsequentlly modified by the discovery
of active loading of sugars into the sieve tube [19]) seems un-
necessary and somewhat confusing. One must assume that the
sieve tube and sieve plates will offer a significant resistance
to solution flow and, therefore, that a pressure gradient would
exist in the presence of mass flow. As shown in equation 3,
the volume flux of solution (J,) across a sieve plate should be
directly proportional to Lp and the hydrostatic pressure differ-
ence across the sieve plate (AP). The arrangement of sieve
plates in a series as in a sieve tube would then result in a
hydrostatic pressure gradient along the sieve tube. If the
assumption were made that solution flow could occur in the
absence of a hydrostatic pressure gradient, this would be
tantamount to assuming zero viscosity. In addition, that move-
ment of water into the sieve tube occurs as a consequence of
solute loading has been an accepted aspect of Munch's pres-
sure-flow hypothesis for many years. Thus there is little to be
gained by referring to the same mechanism of translocation by
another name.

Water movement in the translocation system is controlled
by the water potential difference between the sieve tube and
surrounding tissue. The water potential in the sieve tube in the
source region must be low enough relative to the water po-
tential in the surrounding tissue to move water across the
lateral membranes into the sieve tube. In the sink region, the
water potential in the sieve tube must be greater than in the
surrounding tissue to move water out of the sieve tube across
the lateral membrane. In addition, the water potenial in the
sieve tube along the path will not be in thermodynamic
equilibrium with the water potential in the surrounding tissue.
Thus, if the water potential in the surrounding tissue is the
same along the entire sieve tube, the osmotic pressure gradient
in the sieve tube will be greater than the corresponding hy-
drostatic pressure gradient (Figs. 10 and 11). This difference
between the osmotic and hydrostatic pressure gradients would
be even greater when the water potential in the surrounding tis-
sue in the sink region is greater than in the source region. This
would be normal in a plant with mature leaves serving as the
source region and the roots serving as the sink region. In both
of the above situations, the lower the lateral membrane con-
ductance, the larger the difference will be between the osmotic
and hydrostatic pressure gradients (Figs. 10 and 11). The
osmostic pressure gradient in the sieve tube could be less than
the hydrostatic pressure gradient when the water potential
in the surrounding tissue in the source region is greater than in
the sink region. This could occur when mature source leaves
are supplying translocate to immature sink leaves higher on
the plant. In the latter case the water potential gradient in the
surrounding tissue would be assisting in driving translocation,

Table I. Comparison ofData from Models I and II with Empirical
Data over a Range of Lp Values anid a Constant L8 of 10.2 cm

sec-' atm-'
All values from the models were taken at the center of the path.

Model II Model IJ2 Empirical Refer-
Data ence

Velocity (cm minr') 0.48-1.55 0.45-1.48 0.9 (14)
0.4-1.9 (3, 15)

Concentration (%) 8.0-25.6 8.3-28.0 8.8 (10)
10-25 (4)

Osmotic pressure (atm) 5.7-18.0 6.0-20.1 18.04 (10)
20-24 (17)

Hydrostatic pressure (atm) 2.7-15.3 2.9-16.5 15-20 (17)
Specific mass transfer rate 7.3 7.3 4.8 (14)

(g hr-' cm72 sieve tube) 6-183 (26)

1 L from 1.0 X 10-' to 5.0 X 10-6 cm sec-'.
2 Lp from 2.2 X 10-8 to 7.0 X 10-7 cm sec-1 atm-'.
Assuming that 20%c of the phloem is sieve tubes.

and the osmotic pressure gradient would provide only a por-
tion of the motive force for solution flow, while in the two
previous cases the osmotic pressure gradient provides all the
motive force for solution flow5.

Models I and II differ only in the site of loading and in the
path of water from the xylem to the sieve tube. The accumu-
lation of label in the specialized parenchyma cells of minor
veins (12, 23; Fisher, unpublished data), and the presence of
large-branched plasmodesmata between these cells and the
sieve tube elements (7, 13) would tend to support model II.
However, additional information is needed concerning vein
loading and intercellular translocation of photosynthate in
leaves, and the size and frequency of plasmodesmata between
the sieve tube and the specialized phloem parenchyma cells.

Models I and II demonstrate that the hydrostatic pressure
required to drive solution flow in sieve tubes at observed
velocities and mass transfer rates can be produced by the water
potential difference between the sieve tube and surrounding
tissue. It appears that these mathematical models may ade-
quately describe translocation in sieve tubes and support
Munch's pressure-flow hypothesis as a plausible mechanism
of translocation, at least over shorter distances. However, this
support must be qualified in several respects. The models
establish the potential importance of membrane conductivity to
a pressure-flow mechanism and demonstrate that the hydro-
static pressure which can be generated by a given osmotic
pressure may be much less than the osmotic pressure, rather
than equal to it, as is conventionally assumed. Both of these
factors further complicate the recognized difficulty of explain-
ing translocation over long distances, such as occurs in trees.
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5 One can speculate that an active transport of sugar from the
sieve tube to the specialized parenchyma cells could produce a
considerably higher osmotic pressure in these parenchyma cells
than in the sieve tube. Thus, the flow of water through the plasmo-
desmata into the sieve tube in the source region would be inde-
pendent of the osmotic pressure in the sieve tube, resulting in a
pseudo-active loading of water and the generation of large hy-
drostatic pressures.
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APPENDIX

SYMBOLS

.4, = volume flux of water into the sieve tube (cm' cm-2 see-1)
J, = volume flux of solution down the sieve tube (cm3 cm-2

sec-1)
Lp = lateral membrane conductivity (cm sec-' atm-')
Ls = sieve tube conductivity (cm sec-' atm-')
Ap = lateral membrane surface area (cm2)
A, = sieve tube cross-sectional area (cm2)
o-= reflection coefficient
C = concentration (,ug cm-3)
P = hydrostatic pressure (atm)
-r = osmotic pressure (atm)
R = gas content (atm,4g-' cm3 0K-1)
T = absolute temperature (°K)
a = sucrose solution volume (cm3 pig-')
+0 = water potential in surrounding reservoir (atm)
r = loading rate per sieve tube element (,ug sec-')
V = volume (cm3)

CALCULATION OF SIEVE TUBE CONDUCTIVITY

From Poiseuille's equation the sieve plate conductivity in
cm3 dyne-' sec-' is given by:

r2
L,(plate) = F -

where F is the fraction of the plate area covered by pores, r is
the pore radius in cm, I is the sieve plate thickness in cm, and -1
is viscosity in poise. The sieve tube conductivity is given by:

L,(tube) = 8RL

where R is the radius of the tube and L is the length of the sieve
tube element in cm. The total conductivity of one sieve tube ele-
ment is given by:

L8(total) = (L,-'(tube) + L,-5'(plate))-'
To convert Ls to units of cm atm-' sec-1, multiply by 0.987 X
10-6 dyne atm-' Cm-2.
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