CHEMBIOCHEM

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2011

N-Methyl-Substituted Fluorescent DAG–Indololactone Isomers Exhibit Dramatic Differences in Membrane Interactions and Biological Activity

Noga Gal,^[a] Sofiya Kolusheva,^[a] Noemi Kedei,^[b] Andrea Telek,^[b] Taiyabah A. Naeem,^[b] Nancy E. Lewin,^[b] Langston Lim,^[c] Poonam Mannan,^[c] Susan H. Garfield,^[c] Said El Kazzouli,^[d, e] Dina M. Sigano,^[d] Victor E. Marquez,^[d] Peter M. Blumberg,^[b] and Raz Jelinek^{*[a]}

cbic_201100246_sm_miscellaneous_information.pdf

Gal et al, Supporting Information

Figure 1,SI: Excitation spectra (left) and emission spectra (right) of the DAG-indololactones (dissolved in water).

Figure 2,SI: Dependence of DAG-indololactone fluorescence emission upon solvent polarity. Short dash: water; long dash: ethanol; solid line: n-hexane.

Figure 3,SI: Fluorescence energy transfer from 3 to NBD-PE. Fluorescence emission spectra of NBD-PE/PC (1:100 mole ratio) vesicles incubated with **3**. The spectra were acquired using two different excitation wavelengths: 330 nm (excitation of **3**), and 469 nm (excitation of NBD-PE). **i** – excitation at 469 nm, low concentration of **3** (40 μ m); **ii** - excitation at 469 nm, high concentration of **3** (190 μ m); **iii** - excitation at 330 nm, low concentration of **3** (40 μ m); **iv** - excitation at 330 nm, high concentration of **3** (190 μ m).