Uncovering the Mechanism of the Silver(I)/Persulfate-Catalyzed Cross-Coupling of Arylboronic Acids with Heteroarenes

Niki R. Patel and Robert A. Flowers, II* Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015 Email: rof2@lehigh.edu

Supporting Information

Instrumentation	S4
Materials for synthetic and kinetic studies	S 4
Procedure for degassing solvents	S 4
Procedure for synthesis of 3	S 4
Procedure for Reaction Progress Kinetic Analysis Studies	S 5
Procedure for pyridine ¹ H NMR studies	S 5
Procedure for ¹¹ B NMR studies	S 5
Spectroscopic data for 3	S6
Conditions for same excess experiments (Run 1 and 2)	S6
Decay data for Run 1	S6
Growth data for Run 1	S7
Decay data for Run 2	S7
Plot of rate vs. [1] for catalyst stability	S8
Conditions for different excess experiments for rate order for 2	S8
Decay plot for Run 3	S8
Plot of rate vs. [1] for rate order for $2 - \text{Run } 3$	S 9
Plot of normalized rate vs. [1] for rate order for 2 – Run 3	S9
Conditions for different excess experiments for rate order for 1	S10
Growth plot for Run 4	S10

Plot of rate vs. [3] for rate order of 1	S10
Conditions for different excess experiments for rate order for AgNO ₃	S 11
Decay plot for Run 5	S 11
Plot of rate vs. [1] for rate order for AgNO ₃	S11
Plot of normalized rate vs. [1] for rate order for AgNO ₃	S12
Conditions for different excess experiments for rate order for K ₂ S ₂ O ₈	S12
Decay plot for Run 6	S12
Plot of rate vs. [1] for rate order for $K_2S_2O_8$	S13
Conditions for different excess experiments for rate order for TFA	S13
Decay plot for Run 7	S13
Plot of rate vs. [1] for rate order for TFA	S14
Conditions for different excess experiments for rate order for Na ₂ S ₂ O ₈	S14
Decay plot for Run 8	S14
Decay plot for Run 9	S15
Plot of rate vs. [1] for rate order for $Na_2S_2O_8$	S15
Conditions for experiments using allyl acetate as sulfate radical anion trap	S16
Decay plot for Run 10	S16
Plot of rate vs. [1] comparing Run 1 (100% run) to Run 10 (100% run with Allyl Acetate)	S16
Calculation of conversion of rate data and error	S17
Reactions of boronic acid with silver nitrate	S17
Derivation of rate law	S18
Spectral data for pyridine ¹ H NMR studies	S19
¹¹ B NMR spectrum of 2	S20

¹¹ B NMR spectrum of 4 under reaction conditions at $t = 0$ min	S21
¹¹ B NMR spectrum of 4 under reaction conditions at $t = 4h$	S22
¹ H and ¹³ C NMR spectra for cross-coupled product 3	S23

Instrumentation

GC analyzes were done using a Shimadzu Gas Chromatograph GC-14B. Proton, carbon, and boron NMR were recorded on a Bruker 500 MHz spectrometer. GC-MS analyses were done with an HP 5890 Series II Gas Chromatograph with an HP Mass Selector Detector. Column chromatography was performed using the automated CombiFlash® Rf system from Teledyne Isco, Inc. Products were separated using prepacked silica gel columns with a gradient elution of ethyl acetate and hexanes.

Materials for synthetic and kinetic studies

AgNO₃, $K_2S_2O_8$, $Na_2S_2O_8$ were purchased from Acros Organics. **1** was purchased from Oakwood Products, Inc. **2** was purchased from TCI Fine Chemicals. TFA and **4** was purchased from Alfa Aesar. All chemicals were used without further purification.

Procedure for degassing solvents

CH₂Cl₂ was purified by a Solvent Purification system (Innovative Technology Inc.; MA). H₂O was degassed by bubbling through with argon overnight.

Procedure for synthesis of 3

In a 25 mL round bottom flask with a magnetic stirring bar, **1**, TFA, and **2** were dissolved in 10 mL CH_2Cl_2 . To the flask, 5 mL degassed H2O was added. AgNO₃ was dissolved in 5 mL degassed water and added to the reaction. $K_2S_2O_8$ was added to the reaction as a solid. The flask was then evacuated of air, a septum was attached, and was back-filled with Ar. The reaction was allowed to stir overnight. Reaction workup involved diluting the reaction with 10 mL CH_2Cl_2 and quenching with 10 mL saturated bicarbonate solution. The organic layer was separated and run through a plug of neutral alumina. The alumina was washed with ethyl acetate. Product formation was confirmed by GC-MS. The organic layer was rotary evaporated to dryness. Crude product formation was observed by ¹H NMR in CDCl₃. Product was purified via automated flash chromatography and characterized by ¹H NMR and ¹³C NMR.

Procedure for Reaction Progress Kinetic Analysis¹ Studies

In a 100 mL round bottom flask with a magnetic stirring bar, **1**, TFA, and **2** were dissolved in 30 mL CH₂Cl₂. To the flask, 15 mL degassed H2O was added. AgNO₃ was dissolved in 15 mL degassed water and added to the reaction. $K_2S_2O_8$ was added to the reaction as a solid. The flask was then evacuated of air, a septum was attached, and was back-filled with Ar. The reaction was stopped and 0.5 mL aliquots were taken from the organic layer during the course of the reaction. Aliquots taken were quenched with 1.0 mL saturated bicarbonate solution, and 0.5 mL of biphenyl in ethyl acetate solution was added as an internal standard. The organic layer was extracted and analyzed by GC.

Procedure for pyridine ¹H NMR studies

¹H NMR spectra were obtained for four solutions: 1) In a vial, 28.75 μ L (0.25 mmol) of **1** was dissolved in 1.0 mL CDCl₃. 2) In a vial, 28.75 μ L (0.25 mmol) of **1** and 18.575 μ L (0.25 mmol) of TFA was dissolved in 1.0 mL CDCl₃. 3) In a vial, 28.75 μ L (0.25 mmol) of **1**, 18.575 μ L (0.25 mmol) of TFA, and 42.475 mg (0.25 mmol) of AgNO₃ were dissolved in 1.0 mL CDCl₃. 4) In a vial, 28.75 μ L (0.25 mmol) of **1** and 42.475 mg (0.25 mmol) of AgNO₃ were dissolved in 1.0 mL CDCl₃.

Procedure for ¹¹B NMR studies

¹¹B NMR studies were done using quartz NMR tubes. Spectra were obtained for the following solutions: 1) **2** dissolved in D₂O. 2) In a vial, 0.15 mmol of **4**, 0.1 mmol of **1**, 0.1 mmol of TFA, and 0.02mmol of AgNO₃ was dissolved in 1mL D₂O. The solution was then transferred

¹ (a) Mathew, J S.; Klussman, M.; Iwamura, H.; Valera, F.; Futran, A.; Emanuelsson, E. A. C.; Blackmond, D. G. *J. Org. Chem.* 2006, 71, 4711-4722. (b) Blackmond, D. G. *Angew. Chem. Int. Ed.* 2005, 44, 4302-4320. (c) Devery, J. J., III.; Conrad, J. C.; MacMillan, D. W. C.; Flowers, R. A., II. *Angew. Chem. Int. Ed.* 2010, 49, 6106-6110. (d) Choquette, K. A.; Sadasivam, D. V.; Flowers, R. A., II. *J. Am. Chem. Soc.* 2011, 133, 10655-10661. (reference 7 in paper)

to a quartz NMR tube. A ¹¹B NMR spectrum was immediately obtained. After letting the previous sample sit for 4h, a ¹¹B NMR spectrum was obtained again, showing some hydrolysis of **4** to **2**. 3) In a vial, 0.15 mmol of **4**, 0.1 mmol of TFA, and 0.02mmol of AgNO₃ was dissolved in 1mL D₂O. The solution was then transferred to a quartz NMR tube. A ¹¹B NMR spectrum was immediately obtained. After letting the previous sample sit for 4h, a ¹¹B NMR spectrum was obtained again, showing some hydrolysis of **4** to **2**.

Spectroscopic data for 3

¹H NMR (500 MHz, CDCl₃) δ (ppm): 8.85 (1H, d), 7.93 (3H), 7.42 (1H, d), 7.32 (2H, d), 2.43 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 158.85, 150.54, 140.04, 139.08, 135.32, 129.69, 126.92, 121.95, 117.13, 115.63, 21.31; GC/MS *m/z* (rel. abundance) 237 (100), 91 (13).

Conditions for same excess experiments (Run 1 and 2)

Run	[1] (M)	[2] (M)	[e] (M)	$K_2S_2O_8(M)$	[e] (M)	AgNO ₃ (M)
1-100%	0.1	0.15	0.05	0.3	0.2	0.02
2-50%	0.05	0.1	0.05	0.25	0.2	0.02

Growth data for Run 1

Decay data for Run 2

Plot of rate vs. [1] for catalyst stability

Conditions for different excess experiments for rate order for 2

Run	[1] (M)	[2] (M)	[e] (M)	$K_2S_2O_8(M)$	AgNO ₃ (M)
2-50%	0.05	0.1	0.05	0.25	0.02
3-Diff xs	0.05	0.3	0.25	0.25	0.02

Plot of rate vs. [1] for rate order for 2 – Run 3

Plot of normalized rate vs. [1] for rate order for 2 - Run 3

Run	[1] (M)	[2] (M)	$K_2S_2O_8(M)$	AgNO ₃ (M)
1-100%	0.1	0.15	0.3	0.02
4-Diff xs	0.2	0.15	0.3	0.02

Conditions for different excess experiments for rate order for 1

Growth data for Run 4

Plot of rate vs. [3] for rate order of 1

Run	[1] (M)	[2] (M)	$K_2S_2O_8(M)$	AgNO ₃ (M)	[e] (M)
1-100%	0.1	0.15	0.3	0.02	0.08
5-Diff xs	0.1	0.15	0.3	0.04	0.06

Conditions for different excess experiments for rate order for AgNO₃

Plot of rate vs. [1] for rate order for AgNO₃

Conditions for different excess experiments for rate order for K₂S₂O₈

Run	[1] (M)	[2] (M)	$K_2S_2O_8(M)$	[e] (M)	AgNO ₃ (M)
1-100%	0.1	0.15	0.3	0.2	0.02
6-Diff xs	0.1	0.15	0.6	0.5	0.02

Plot of rate vs. [1] for rate order for K₂S₂O₈

Conditions for different excess experiments for rate order for TFA

Run	[1] (M)	[2] (M)	$K_2S_2O_8(M)$	AgNO ₃ (M)	TFA (M)
1-100%	0.1	0.15	0.3	0.02	0.1
7-Diff xs	0.1	0.15	0.3	0.02	0.2

Plot of rate vs. [1] for rate order for TFA

Conditions for different excess experiments for rate order for Na₂S₂O₈

Run	[1] (M)	[2] (M)	$Na_2S_2O_8(M)$	[e] (M)	AgNO ₃ (M)
8-100%	0.1	0.15	0.3	0.2	0.02
9-Diff xs	0.1	0.15	0.6	0.5	0.02

Plot of rate vs. [1] for rate order for $Na_2S_2O_8$

Run	[1] (M)	[2] (M)	$Na_2S_2O_8(M)$	AgNO ₃ (M)	Allyl Acetate (M)
1-100%	0.1	0.15	0.3	0.02	0.0
10-AllylAc	0.1	0.15	0.3	0.02	0.6

Conditions for experiments using allyl acetate as sulfate radical anion trap

Decay plot for Run 10

Plot of rate vs. [1] comparing Run 1 (100% run) to Run 10 (100% run with Allyl Acetate)

Calculation of conversion of rate data and error

Concentration samples at specific time points are plotted as [1] (M) vs. time (s). The data are then fit to a first order exponential decay using Equation 1.

$$[1] = y_0 + Ae^{\frac{-time}{t}} \tag{1}$$

The standard deviation of the [1] resulting from curve fitting is determined using Equation 2.

$$\sigma_{[1]} = A e^{\frac{-time}{t}} \sqrt{\left(\frac{-e^{\frac{-time}{t}}}{t}\right)^2 + \left(\frac{\sigma_A}{A}\right)^2} + \sigma_{y_0}$$
(2)

The derivative of Equation 1 provides the equation for the rate of change in [1] and is given in Equation 3.

$$-\frac{d[1]}{dt} = \frac{Ae^{\frac{-time}{t}}}{-t}$$
(3)

The standard deviation of -d[1]/dt resulting from Equation 3 is determined using Equation 4.

$$\sigma_{\underline{d[1]}} = \frac{Ae^{\frac{-time}{t}}}{-t} \sqrt{\left(\frac{-e^{\frac{-time}{t}}}{t}\frac{time}{\sigma_t}\right)^2 + \left(\frac{\sigma_A}{A}\right)^2 + \left(\frac{\sigma_t}{t}\right)^2}$$
(4)

Reactions of boronic acid with silver nitrate

Derivation of rate law

Rate Equation:

$$-\frac{d [CF_3C_5H_4N]}{dt} = k_2 [CF_3C_5H_4N - Ag^I] [S_2O_8]$$

The interaction between silver(I) and pyridine was assumed to be at steady state:

$$\left[CF_{3}C_{5}H_{4}N - Ag^{I}\right] = \frac{k_{1}[CF_{3}C_{5}H_{4}N][Ag^{I}]}{k_{-1} + k_{2}[S_{2}O_{8}^{2-}] + k_{3}[Ar - B(OH)_{2}]}$$

$$-\frac{d \left[CF_{3}C_{5}H_{4}N\right]}{dt} = \frac{k_{1}k_{2}\left[CF_{3}C_{5}H_{4}N\right]\left[Ag^{I}\right]\left[S_{2}O_{8}\right]}{k_{-1}+k_{2}\left[S_{2}O_{8}^{2-}\right]+k_{3}\left[Ar-B(OH)_{2}\right]}$$

A mass balance was written for the silver complexes in the system:

$$[Ag^{I}]_{tot} = [Ag^{I}] + [CF_{3}C_{5}H_{4}N - Ag^{I}]$$

[Ag^I] was solved for and inserted into the rate law:

$$-\frac{d \left[CF_{3}C_{5}H_{4}N\right]}{dt} =$$

$$\left(\frac{k_1k_2[CF_3C_5H_4N][S_2O_8]}{k_{-1}+k_2[S_2O_8^{2-}]+k_3[Ar-B(OH)_2]}\right)\left(\frac{k_{-1}[Ag^l]_{tot}+k_2[S_2O_8^{2-}][Ag^l]_{tot}+k_3[Ar-B(OH)_2][Ag^l]_{tot}}{k_{-1}+k_2[S_2O_8^{2-}]+k_3[[Ar-B(OH)_2]]+k_1[CF_3C_5H_4N]}\right)$$

Assuming $k_2 \ll k_{-1}$, $k_2 \ll k_3$, $k_2 \ll k_1$, and that Ag^I is the resting state of the catalyst:

$$-\frac{d\left[CF_{3}C_{5}H_{4}N\right]}{dt} = k_{1}k_{2}\left[CF_{3}C_{5}H_{4}N\right]\left[S_{2}O_{8}^{2-}\right]\left[Ag^{I}\right]_{tot} \left(\frac{k_{-1}+k_{2}\left[S_{2}O_{8}^{2-}\right]+k_{3}\left[Ar-B(OH)_{2}\right]}{k_{-1}^{2}+2k_{-1}k_{3}\left[\left[Ar-B(OH)_{2}\right]\right]+k_{3}^{2}\left[Ar-B(OH)_{2}\right]^{2}}\right)$$

$$\approx k_{obs} \frac{[CF_3C_5H_4N] [S_2O_8^{2-}] [Ag^I]_{tot}}{[Ar - B(OH)_2]^{0.5}}$$

Spectral data for pyridine ¹H NMR studies

¹¹B NMR spectrum of 4 under reaction conditions at t = 0 mins

¹¹B NMR spectrum of **4** under reaction conditions at t = 4h

¹H and ¹³C NMR spectra for cross-coupled product **3**

