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Fig. S1. Schematic of operations in our numerical flow-routing model. (A) Matrix indices relative to the center grid cell. (B) The parameter S determines the
slope of the domain, from which (C) random values 0–R are subtracted. (D) From a given cell, the flow path moves to occupy whichever of its nearest neighbors
has the lowest value. (E) As the flow path is developing, values of cells that the flow has occupied are temporarily reset to the unperturbed elevation at that
cell, as in B. This value constitutes a local maximum that discourages the flow path from getting arbitrarily trapped by a local minimum, but does not nec-
essarily prevent the path from recrossing itself, particularly when R >> S. (F) Once completed, cells occupied by the flow path are reset equal to the domain
elevation given by B, minus the maximum perturbation R. Sinuosity is the total length of the flow path (arrows show the respective lengths of straight and
diagonal steps) divided by the length dimension of the domain. The flow path in the schematic above, excluding the steps into and out of the grid, has
sinuosity Ω = 5.82 ÷ 4 = 1.5.
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Fig. S2. Theoretically, sinuosity has no upper bound. However, where channel migration occurs in natural systems, flow dynamics tend to not only create
excursive meanders but also cut them off, episodically shortening the overall channel length and reducing sinuosity. In the absence of a cutoff mechanism,
resistance-dominated conditions (R/S >> 1) in our model will produce supersinuous patterns that are more numerical artifacts than useful analogs, a problem
others have also encountered. We affect a cutoff-like function by updating and iterating the domain to allow the flow path to find a minimum length for
a given combination of R and S that excludes numerical artifacts of supersinuous paths from the compiled results, particularly when R >> S. (A) Example of
iterated flow paths and (B) corresponding sinuosities for R = 0.04 and S = 0.001. C and D show the comparatively locked planform of a slope-dominated, low-
sinuosity channel (R = 0.001 and S = 0.04).
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Fig. S3. (A) SD versus R/S of ensemble model runs. Variance scales with mean R/S. (B) Power spectra of representative modeled low-, medium-, and high-
sinuosity planforms, with the power spectrum for a brown-noise signal (integral of a white-noise signal) for comparison. The model does not produce
planforms with a preferred wavelength. Both A and B are indicative of the model’s fundamentally Brownian structure.

Fig. S4. Historical changes in the Sacramento River planform in terms of floodplain Froude number, plotted atop the data in Fig. 4B. The linked gray and black
star symbols at Ω = 2.2 mark the difference between assuming Manning’s n = 0.15 (gray) or n = 0.10 (black) for the natural floodplain before 1874. Star symbol
at Ω = 1.4 reflects the effect of orchard plantations (here, n = 0.05) after 1898.
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Table S1. Locations and credits for images shown in Figs. 1, 3, and 5

Fig. Location Source

1A 37.84°N, 126.21°E (1)
1B 38.22°N, 109.88°W (2)
1C 44.57°N, 70.71°W (1)
1D 19.17°S, 35.08°W (3)
1E Mars: −6.008° (centered), 153.833°E (4) location at center of image
1F N/A (5)
3A 51.51°N, 3.05°W (1)
3C 56.42°N, 3.12°W (1)
3E 51.36°N, 3.70°W (1)
4A 64.43°N, 149.36°W (1)
4B 64.49°N, 148.31°W (1)
4C 39.46°N, 121.99°W Digitized channels based on maps in ref. 6; base image 1
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503670main_120210a.jpg. Accessed May 2012.
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Table S2. Twenty meandering river reaches used in floodplain Froude number calculations

River name Location Valley slope (× 10−3) Sinuosity Floodplain Manning’s n Coordinates

Severn United Kingdom 4.9 (1) 1.22* 0.10 52.74°N, 2.81°W
Jiu Romania 5.0 (2) 1.29 (3) 0.10 44.17°N, 23.83°E
Republican Nebraska 0.9 (4) 1.30 (4) 0.05 39.39°N, 97.18°W
Calamus Nebraska 1.3 (5) 1.30 (5) 0.05 42.02°N, 99.47°W
Sacramento California 0.8 (6) 1.39 (3) 0.05 39.44°N, 122°W
Peace Canada 0.3 (7) 1.39 (3) 0.05 58.4°N, 114.75°W
Yampa Colorado 0.2 (8) 1.40* 0.10 40.5°N, 107.5°W
Yellow China 0.2 (9) 1.48 (3) 0.05 40.47°N, 109.35°E
Vyatka Russia 0.3 (10) 1.55 (3) 0.05 58.38°N, 48.7°E
Liard Canada 0.6 (11) 1.78 (3) 0.10 60.03°N, 128.88°W
Smoky Hill Kansas 0.7 (4) 1.80 (4) 0.15 38.96°N, 96.91°W
Tana Kenya 0.5 (12) 1.80 (3) 0.10 1.65°S, 40.11°E
Okavango Botswana 0.4 (4) 1.86 (4) 0.10 18.10°W, 21.62°E
Ucayali Peru 0.07 (13) 1.86 (3) 0.15 6.05°S, 74.85°W
Manu Peru 0.1 (14) 1.90 (3) 0.15 12.7°S, 69.7°W
Beni Bolivia 0.1 (15) 1.92 (3) 0.15 11.73°S, 66.78°W
Ramu Papua New Guinea 0.5 (16) 1.96 (3) 0.15 4.13°S, 144.68°E
Jutai Brazil 0.7 (17) 2.10 (3) 0.15 4.35°S, 67.9°W
Jurua Brazil 0.7 (17) 2.17 (3) 0.15 4.45°S, 66.65°W
Purus Brazil 0.7 (17) 2.20 (3) 0.15 6.88°S, 64.63°W

*Measured.
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