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Model of N-Fold Geometry. To study the effect of the fold symmetry
on the optimal rotational configuration we construct a modelN-fold
geometry. The configuration of each heterodimer is independent
of the fold number N, so that we may fix the αβ-heterodimer
structure (1). As indicated in Fig. S1, this subunit of light-har-
vesting complex 2 (LH2) consists of two B850 bacterichloro-
phylls (BChls). Between the two B850 BChls within the
heterodimer the Mg–Mg distance is set to a= 9:45 Å, whereas
between the nearest BChls of neighboring heterodimers, the
Mg–Mg distance is set to b= 9:01 Å. The orientations of the
heterodimer’s transition dipole moments, taken with relation to
the Mg–Mg vector within the heterodimer, are θα = 168:638 and
θβ = − 21:068. We have obtained these values from the LH2
B850 ring structure of Rhodopseudomonas acidophila (Protein
Data Bank ID 1NKZ).
Next, we assume that an N-fold ring may be constructed by

mapping this fixed-structure heterodimer N times around a single
circumference. Due to this constraint, both the radius, R, and the
angle, α, subtended at the origin by the cord a, are explicit func-
tions of the fold number N and heterodimer constants a and b.
From Fig. S1, we obtain the relations

R sinðα=2Þ= a=2;

R sin½ð2π=N − αÞ=2�= b=2:

Solving the above simultaneous equations yields

α= 2 sin−1ða=2RÞ;

and

R=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + b2 + 2ab cosðπ=NÞ

p
2 sinðπ=NÞ : [S1]

Eq. S1 is the radius of the N-fold B850 ring subject to the con-
straints of a fixed dimer structure aligned upon a single circum-
ference. For N = 8 and N = 9 Eq. S1 yields radii of 23:67 �A and
26:59 �A, which compare favorably with the radii of Rhodospir-
illum molischianum and Rps. acidophila, 23:4 �A and 26:37 �A,
respectively.

Model Hamiltonian. In the site basis, the system Hamiltonian of
a single B850 ring with N-fold symmetry is (2)

H =
X2N
n= 1

Enjnihnj+
X2N
n≠ n′

Vnn′jni
�
n′j; [S2]

where jni represents the state where only the nth chromophore is
in its excited state and all others are in their ground states (3). En
is the site energy of the nth chromophore, defined as the optical
transition energy at the equilibrium configuration of environmen-
tal phonons associated with the ground state. Vnn′ denotes the
electronic coupling between the nth and the n′th chromophores
and is responsible for migration of electronic excitation within the
complex. The non-nearest-neighbor coupling terms are calculated
using the dipole–dipole approximation Vnn′ =C½ð~dn·~dn′Þ=j~rnn′j3 −
3ð~rnn′·~dn′Þð~rnn′·~dnÞ=j~rnn′j5�, where ~dn = h0jμ̂jni is a unit vector de-
scribing the direction of the dipole moment of the ground state

j0i to the Qy excited state transition of the nth chromophore, μ̂ is
the dipole operator,~rnn′ is the vector connecting the centers of
chromophore n and chromophore n′, and C is an appropriate, di-
mensioned constant. The following values are used throughout: the
site energy En = 12480 cm−1, the intradimer coupling V2n−1;2n =
V2n;2n−1 = 363 cm−1 ðn= 1; . . .NÞ, the interdimer coupling
V2n+1;2n =V2n;2n+1 = V1;2N =V2N;1 = 320 cm−1 ðn= 1; . . .N − 1Þ,
and the dimensioned constant C= 348; 000 �A

3
·cm−1 (4, 5). Note

that we have neglected the dependence of the interdimer coupling
on the fold number N (due to the changing orientations of the
neighboring transition dipole vectors). This is of no consequence
to our results and conclusions.
An important property of N-fold symmetric ring structures is

the existence of N − 2 and N − 1 pairs of degenerate eigenstates
for even and odd N, respectively (6). Consider the dimeric
(N-fold) structure of the B850 ring. One can introduce the col-
umn vector j:ii of local states

jpii=
� j2 p− 1i

j2 pi
�
; [S3]

where p= 1; 2; . . .N, and the 2× 2 matrix of coupling terms

Hqp =
�
V2 q−1;2 p−1 V2 q−1;2p

V2 q;2 p−1 V2 q;2 p

�
; [S4]

with Vqq =Eq, so that the Hamiltonian Eq. S2 may be written
H =

PN
q;pHqpjqiihhpj. Due to the periodicity of the ring, the ei-

genvector coefficients of this Hamiltonian are simply the Fourier
coefficients, i.e., ref. 6,

jkii= 1ffiffiffiffi
N

p
XN
p= 1

eikð2πp=NÞjpii; [S5]

where k= 1; 2; . . .N. The corresponding eigenvalues are

hhkjHjkii= 1
N

XN
q= 1;p= 1

eik2πðp−qÞ=NHqp

=
XN
p= 2

eik2πðp−1Þ=NH1p:
[S6]

According to Eq. S6, when N is even, there are two nondegen-
erate states k=N=2 and k=N as well as ðN − 2Þ=2 pairs of de-
generate states k= j and k=N − j, ½j= 1; 2; . . . ðN=2− 1Þ�. For odd
N, the spectrum consists of only one nondegenerate state,
k=N, and ðN − 1Þ=2 pairs of degenerate states, k= j and
k=N − j,½j= 1; 2; . . . ðN − 1Þ=2�. However, the above analysis is
for the “monomer” case. Each LH2 site is a dimer. Thus, di-
agonalization of each dimer-Hamiltonian H1p yields an eigene-
nergy splitting, which gives rise to two subeigenenergies. As a
result, we get 2× 2= 4 nondegenerate states and 2× ðN − 2Þ=2=
N − 2 pairs of degenerate states for even N, as well as 2× 1= 2
nondegenerate states and 2× ðN − 1Þ=2=N − 1 pairs of degen-
erate states for odd N. For example, for N = 8 diagonalization
of the Hamiltonian (2) yields four nondegenerate eigenstates
j«1i; j«8i; j«9i, and j«16i, as well as six pairs of degenerate eigen-
states. Similarly, a fold number of N = 9 yields two nondegenerate
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eigenstates j«1i and j«18i, as well as eight pairs of degenerate
eigenstates. From this analysis, it is clear that the eigenenergy
structure of an LH2 B850 ring is decided by the fold symmetry
number N arising from the dimeric structure of the ring.

Mirror Symmetry Lines of Two N-Fold Rings. The excitation energy
transfer (EET) rate between two N-fold rings as a function of the
rotation angles, jJj212 ≡ Fðθ1; θ2Þ, displays mirror symmetry lines
at θ1 = θ2 ± π=9 for N = 9 and a symmetry line at θ1 = θ2 for N = 8
(dashed lines in Fig. 3A and Fig. S3A, respectively). Using
a simple geometrical argument, we prove that the phase shift
of the mirror symmetry lines ϕN = θ1 − θ2 + 2πp=N, ðp∈ℤÞ for
any N is

ϕN =
�
π=N N odd;
0 N even: [S7]

For odd fold numbers, consider the EET rate between two three-
fold rings. As shown in Fig. S2A, the initial rotational configu-

ration is given by ðθ1; θ2Þ. If we rotate the whole system by 1808
(C2 rotation) about the point O, it is easy to see that the new
configuration in Fig. S2B is given by ðθ2 + π; θ1 + πÞ. However,
the EET rate Fðθ1; θ2Þ between the two rings is invariant under
C2 rotation of the whole system. Hence we have

Fðθ1; θ2Þ=Fðθ2 + π; θ1 + πÞ;
=Fðθ2 + π=3; θ1 + π=3Þ;

where the second relation follows from the 2π=3 periodicity of the
individual rings. We thus have identified the point ðθ1; θ2Þ with
ðθ2 + π=3; θ1 + π=3Þ on the EET landscape F. This is exactly
equivalent to having mirror symmetry lines at θ1 = θ2 ± π=3. This
argument is easily generalized to any odd N, providing a simple
proof of Eq. S7 for N odd.
For even fold numbers, because π is always evenly divisible by

the ring’s periodicity 2π=N, one obtains the result Fðθ1; θ2Þ=
Fðθ2 + π; θ1 + πÞ=Fðθ2; θ1Þ so that the mirror symmetry line is
θ1 = θ2. This provides proof of Eq. S7 for N even.
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Fig. S1. Model of N-fold geometry. The structure of a single αβ-heterodimer subunit is fixed by specifying the intradimer Mg–Mg distance a= 9:45 Å and
interdimer Mg–Mg distance b= 9:01 Å. The orientations of the transition dipole moments are θα = 168:638 and θβ = − 21:068. The radius R and angle α are
explicit functions of the fold number N and constants a and b.
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Fig. S2. (A) EET landscape Fðθ1; θ2Þ of a pair of N-fold rings is invariant under C2 rotation about the point O of the two rings. (B) Consequently
Fðθ1; θ2Þ= Fðθ2 + π; θ1 + πÞ.

Fig. S3. (A) EET rate surface jJj212 between two eightfold B850 rings as a function of the rotation angles θ1 and θ2. The mirror symmetry line θ1 = θ2 is indicated
by the dashed line and passes through the maximum at θ1 = θ2 = 168. (B) Cross section of the surface in A for θ1 = 168, showing the 2π=8 periodicity. (C) Optimal
rotational configuration has both rotational and point symmetry about and through the point O.
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Fig. S4. (A) Four eightfold B850 rings placed at the vertices of a rhombus basis cell (dashed line). The matching EET rates (indicated by color) are jJj223 = jJj214 and
jJj231 = jJj242 and the rotation angles are θ1 = θ2 = 168 and θ3 = θ4 = 398. Consequently the optimal rotational configuration has rotational symmetry of order 2 with
respect to the central point O. (B, Left) Primitive unit cell of the Bravais lattice (thick dashed line), where ~a and ~b are the primitive vectors that generate the
lattice. (B, Right) Boundary rates (14 thick solid lines) of the rhombus basis cell (colors indicate rates of equal magnitude).
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