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S1 Background of information dissipation 

S1.1 Information theory 

The amount of information that is stored in a variable is the minimum number of yes/no 
questions that is needed to determine a value for the variable1. The value of a variable that 
encodes the result of a fair 50%-50% coin toss can be uniquely identified by at least one yes/no 
question, namely ‘did the coin toss result in heads?’ We say that it stores 1 bit of information. 

More generally, a variable with N  equally probable values stores 2log N  bits. This is the 

maximum amount of information that a variable with N  possible values can store. 

The information stored in a variable can be less than 2log N  if its values have different 

probabilities. Suppose, for instance, that we toss a coin of which we know it results in heads 90% 
of the time.  Intuitively, the outcome of a toss is less informative because we already anticipate it 
in part. In the extreme case of a coin with two identical sides the outcome of a toss provides zero 
information because the question of its outcome is already completely answered beforehand. 

In general, the number of bits that is stored in a variable s with possible outcomes 1 2{ , , , }nv v v  

is the Shannon entropy 

 
( ) logi i

i

H s p p 
, 

where ip
 is the chance that the value of s  is 

iv . This quantity has two meanings. Firstly it is the 

number of bits that one must obtain, through measurement or inference, in order to identify the 
outcome of s , historically interpreted as the ‘missing information’. The second meaning is that 
s  is capable of storing ( )H s  bits of information about other variables, which we explain next. 

Let us interpret variable 
1s  to encode the state of one dynamical unit and variable 

2s  to encode 

the state of another dynamical unit. We refer to 
1s  and 

2s  as states and their values as instances. 

According to the second meaning of Shannon entropy, learning the instance of 
1s  can provide 

between zero and 1( )H s  bits of information about the instance of 
2s . It is non-zero in case the 

states 
1s  and 

2s  are correlated or cause-and-consequence, such that the fact that 
1s  is in a 

particular instance tells us something about the instance of 
2s . If 

1s  and 
2s  are independent 

processes then this mutual information is zero. If, on the other hand, 
2s  encodes  for instance the 

state of a tossed coin that tends to be equal to the state of another tossed coin 
1s , then the more 

2s  depends on 
1s  the more information about 

1s  is stored in 
2s  (and vice versa). 

The amount of this mutual information is 

 1 2 1 1 2( | ) ( ) ( | )I s s H s H s s  , (1) 

where 1 2( | )H s s  is the conditional variant of ( )H s . In words, knowing 
2s  reduces the number of 

unknown bits about the outcome of 
1s  from ( )H s  to 1 2( | )H s s . We can interpret 1 2( | )I s s  as the 

amount of information that the variable 
2s  stores about the variable 

1s .  
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Information can be transferred between interacting states. Here, an interaction between two states 
means that one state (partly) depends on the other state, vice versa, or both.  Suppose that two 

interacting dynamical units 1s  and 2s  form a system, and suppose that both units are equally 

influenced by other factors outside this system. The information that is stored by the state 1s  

about the other state 2s  now consists of two parts: an amount corrI  which both states have in 

common because they are subject to the same external influence (creating a correlation), and an 

additional intI  which is due to the interaction between the states (creating additional 

correlation)2.  The information intI  is present in the variable 
1s  at first and not in 

2s  in case there 

is no interaction, so we can say that information is transferred, by means of interactions, from 

one state to another. Although corrI  did not transfer directly through the interaction between 1s  

and 2s it did transfer through the external interactions in a similar way to both 1s  and 2s . The 

reason that it creates mutual information between 1s  and 2s  is because both states store the same 

corrI  bits of information, which makes the stored information in both states overlap with each 

other. 

S1.2 Information dissipation 

In a system of interacting units we can let t
is  correspond to the state of unit i  at time t . The more 

random the interaction among the connected units, the less information is transmitted between 
the states and therefore the lower the correlation between the states of the units. These 
connections form a network in which information about a unit s  is transmitted to its neighbors, 
which store it in their state. Each neighbor subsequently transmits information about its own 
state, which partly consists of the information from unit s , and so on, inducing the percolation 
and mixing of many different pieces of information through the system.  

The distance that information travels is a direct measure of how far the dynamics of a unit 
percolates through the system. If there are no interactions then all information is stationary, and 
the units are incapable of system-wide state transitions. In the other extreme, if each unit would 
copy the state of another unit, then information can travel infinitely far and even a single unit can 
cause the entire system to change its state. For real systems, this information dissipation length 
(IDL) lies somewhere in between these two extremes. Since critical phenomena require a 
synchronous change of state of a majority of units in the system, our hypothesis is that we can 
quantify the plausibility of self-organized critical phenomena by a significant increase of IDL. 
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Figure S1: Three different modes of information transfer in a one-dimensional sequence of coin tosses. (a) If a 
subsequent coin toss does not depend on the previous outcome, then information remains local and is not 
transferred. (b) If each coin toss tends to be equal to the previous outcome, then information about the first 
outcome transfers and dissipates to zero. (c) If each coin toss is biased then each outcome provides the 
transferred information in addition to the constant prior information due to the bias. The dissipation time of 
information is not affected by the presence of prior information. 
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S1.3 Calculating the information dissipation length in IRS prices 

We first illustrate how information dissipates through a one-dimensional system by the example 
of coin flips. Then we present an algorithm that can be used to measure the IDL in the prices of 
IRS of different maturities. 

Suppose that the outcomes of coin flips 1 2 3, , ,s s s   depend on each other such that 2s  tends to be 

equal to 1s , then 3s  tends to be equal to 2s , and so on. The question is how far the information 

from 1s  can travel in this one-dimensional system. 

If the coin flips do not depend on each other, i.e., each is  reproduces 1is   with a 50% chance, 

then the outcome of a coin flip provides no information about the outcome of any other coin flip. 

Hence, information about 1s  is not transferred and the IDL is zero. See Figure S1a. 

Suppose now that each outcome is  is equal to 1is   with a 75% probability. The second coin flip 

2s  can infer the probability distribution of the outcome 1s  by using Bayes’ theorem 

1 1 1( | ) ( ) ( | ) ( )i i i i i ip s s p s p s s p s     , which in this example means simply that 1s  is distributed 

75%-25% over its two possible states. Using Eq. (1) we find that 2s  stores 0.19 bits about 1s , or 

in other words, 19% of the state 2s  is actually a reflection of the state 1s . The remaining 81% of 

its state is still randomness or noise, as before.  Similarly, 3s  can use Bayes’ theorem to find that 

its state is equal to 1s  with probability 2 20.75 0.25 68%  , so according to Eq. (1) it received 

0.046 bits of information from 1s . Clearly, the 1 bit of information about 1s  is imperfectly 

transferred through the system and eventually vanishes. See Figure S1b. 

In the more general case there can be prior information about 1s  already stored in the system. 

This information is not transferred through dynamics but can be due to an external force or prior 

knowledge. For instance, let 1s  be the outcome of an unfair coin flip that is distributed 75%-

25%. Even in the absence of interactions, each subsequent outcome is  can already infer 0.19 bits 

of the state 1s . Information received due to interactions will be additional to this ‘baseline’ 

information, see Figure S1c. 

We can now calculate the IDL of this example. All coins and their interactions are equivalent, so 
we expect a constant rate f  of losing information at each subsequent coin flip: 

1 1
1 1 1

1 1 1 1 1
1 1 1 1

1 1 1 1 1 1
( ) log( ) log log 2( | ) ( ) ( | ) 2 2 2 2 2 2

1 1 1 1 1 1 1 1( | ) ( ) ( | ) ( ) log( ) ( ) log( ) log 2
2 2 2 2 2 2 2 2

n n n n
n n

n n
n n n n

I s s H s H s s
f

I s s H s H s s

 

 
   

   
  

      
. 

This rate is constant except for a small deviation for the lowest n , which we find by taking the 

limit of n  using L’Hopital’s rule:  

lim 4
n

f


 . 



6 

 

In words, each subsequent coin flip is  stores one quarter of the information that its predecessor 

1is   stores. We define the information dissipation length as the characteristic halftime of 

information, so in this case 

 
1log 12IDL of coin flips
1 2log

f

   (2) 

Following this intuition we measure the IDL in the one-dimensional system 1 2, ,t tr r  , where t
ir  is 

the return (relative difference) of a IRS of the i th maturity (1 year, 2 years, etc.) at time t . We 
assume that all interactions among subsequent rates are equivalent and that each rate stores 

information in a similar manner. In this case there is a constant rate tf  of losing information 

about 1r  at each time t , which leads to the IDL at time t  through Eq. (2).  

S2 How IDL differs from other leading indicators 

The primary difference between IDL and other the alternative leading indicators analyzed here is 
that it filters out external correlation at each time point. The IRS prices across maturities are 
financial indicators which not only correlate amongst themselves, but may also correlate with 
external indicators such as the house-price index (HPI). A standard correlation computed 
between IRS prices therefore consists of two parts: their interdependence (cause-and-effect) and 
the external correlation they have in common. This is the case in the previously introduced 
spatial leading indicators3–7. 

As the causal relation between two IRS prices becomes more indirect (larger difference in 
maturity), the interdependence vanishes to zero, and the external correlation that they all have in 
common remains. IDL estimates the magnitude of this common external correlation at each time 
point, and computes the characteristic length scale of the decay of interdependence on top of it. 
This idea is illustrated in Figure S1c. It is analogous to the classical concept of correlation length, 
where the mutual information is used as correlation measure. 

The second difference is the use of the mutual information measure to compute correlations 
between time series. Typically, Pearson-like and other linear correlation measures are used to 
construct leading indicators. In contrast, the mutual information measure is capable of detecting 
various non-linear forms of correlation as well8. 
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S4 Robustness of IDL as a leading indicator 

Estimating the IDL requires two parameters: the size of the sliding window w  and the number of 
bins h  used to construct the contingency table. At each time point we use the preceding w  price 

values in two time series 1,..., wX x x  and 1,..., wY y y  in order to estimate their mutual 

information ( | )I X Y . The number of bins determines the price equivalence relation, i.e., which 

price values are considered equal in each sliding window. This is necessary to calculate the 
mutual information using the discrete version of Eq. (1), i.e., to estimate the joint probability 
distribution of the two price values using a finite set of observations. The values of each time 
series X  and Y  are first binned into h  bins such that each bin contains approximately the same 
number of samples and then the contingency table is constructed, known as adaptive (product) 
partitioning9. 

The higher the sliding window size w , the more accurate can mutual information be estimated 
but the less sensitive it is to detecting short-term events or sudden changes. Therefore, w  should 
be as low as permitted by the accuracy of calculating the mutual information. 

If the number of bins h  is too high then no price values will be considered equal, which means 
that each observed pair of prices is unique and the mutual information is invariably maximum. 
Decreasing the number of bins implies a lower sensitivity to small correlations of price 
fluctuations, so the number of bins determines the magnitude of price changes that are correlated. 
Here too is a trade-off between accuracy and sensitivity. We use a data-driven statistical 
procedure to select the order of magnitude of the h  parameter in Section S4.1 within which we 
vary its value to study the robustness. 

We show the IDL for a wide range of parameter values for w  and h  in Figure S2 through Figure 
S4. We show at least one value (50) for w  which is ‘too small’ in order to indicate its lower limit. 
This shows in what range the window size should be chosen; we chose 300w   as a tradeoff 
between noise and sensitivity for Figure 1 in the main text. 

We find a remarkable robustness of the IDL indicator if w  is chosen to be at least 200, and h  is 
chosen to be less than 50. The shapes of the IDL curves differ only in details, and the timing of 
their peak is consistently at the Lehman Brothers bankruptcy. 
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Figure S2: The IDL indicator for IRS rates in the USD and EUR currency, where 5 and 10 bins are used for 
the contingency table and sliding window sizes 50, 100, 200, 300, 500. Time point zero corresponds to the day 
of the Lehman Brothers bankruptcy. 
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Figure S3: The IDL indicator for IRS rates in the USD and EUR currency, where 15 and 20 bins are used for 
the contingency table and sliding window sizes 50, 100, 200, 300, 500. Time point zero corresponds to the day 
of the Lehman Brothers bankruptcy. 
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Figure S4: The IDL indicator for IRS rates in the USD and EUR currency, where 50 and 75 bins are used for 
the contingency table and sliding window sizes 50, 100, 200, 300, 500. Time point zero corresponds to the day 
of the Lehman Brothers bankruptcy. 
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S4.1 Choosing the number of bins based on the data 

We follow a systematic procedure in order to find an optimal number of bins h  based on the 
‘minimum description length’ principle10. The parameter h  induces a histogram estimator of the 
underlying (unknown) probability density of the set of w  IRS returns at a particular time. 
Naturally, a good estimator follows the data closely while still being parsimonious. Intuitively, 
the estimator follows the data closely if it assigns high probability to dense clusters of values, 
and low probability to value ranges that contain only few samples. It is parsimonious if it is not 
too complex to describe, i.e., requires only a small number of characters to write down the data 
together with the estimator. 

Rissanen10 defined the formula ( )F h  to calculate this description length, or ‘stochastic 

complexity’, as a function of the parameter h , as 

 
1

! ( 1)!
( ) log log log

! !( 1)!

h

i i
i ii

n n h
F h n R

n n h

 
  





 . (3) 

Here, in  is the number of data points that fall in the i th bin and iR  is the width of bin i . The 

value for h  that minimizes this stochastic complexity is then considered the optimal value that 
should be used to summarize the last w  data points at time t . We use 300w   as determined in 

the previous Section and repeat this procedure for all windows ( 299) ( )
1 1,...,t tr r   in the 1-year 

maturity USD data, where t  runs through the time series with step size 10 . The result is then a 
distribution of optimal values for h  for our data, which serves as the range of values to be used 
for our IDL calculations in the previous Section. 

Instead of computing ( )F h  for the case of adaptive partitioning (variable bin width), which is 

the algorithm used to calculate the IDL curves, we compute ( )F h  for the equidistant binning 

procedure, where each bin has the same width. The reason is that the stochastic complexity 
formula appears to handle duplicate values poorly, which for our data is an average of 10% of a 
randomly chosen window of 300 values. The consequence of duplicate values is a deviation from 
the uniform distribution of data points into bins, i.e., some bins will have more samples than 
average, and some other bins will have fewer samples. This makes the second term, which is 
code length required to encode the bin number for each data point, (much) smaller than it should 
be, such that its upward trend never outweighs the downward trend of the first term, which is the 
code length needed to place a data point within a bin’s width given that it is known to which bin 
it belongs. The result is that for all windows we find an optimal h  that is close to w  or even 
exceeds it, which is clearly not a parsimonious description of the data so we deem this method 
incorrect. Using fixed width bins does not have this problem so we use this procedure as an 
approximation. We will compare the result with two additional rules of thumb from the literature 
in order to verify that this approximation is indeed suitable. 

A typical curve of stochastic complexity ( )F h  as function of h  is shown in Figure S5. We 

estimate the location of the minimum by first smoothing the curve using a Gaussian kernel with a 
standard deviation of 5 data points. Then we find the global minimum value of this smoothed 
curve, identifying the optimal h  for the particular window. The histogram of optimal values opth   

for all windows is shown in Figure S6.  
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Figure S5: A typical curve for the stochastic complexity ( )F h  as function of h  for the equidistant binning 

procedure, using a sliding window size of 300w  . This curve is calculated from the last 300 returns 
available at the 1000th trade day in the 1-year maturity USD data. The optimal number of bins to use for 
calculating the mutual information at this time is identified by the minimum of the curve. The values on the 
y-axis have no absolute meaning. 
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Although for most windows we found an intermediate optimal h , for some windows ( )F h  was 

monotonically decreasing and therefore yielded a very high optimal value. The overall average 
optimal h  is 50.16 bins. Ignoring the incidental high values yields an average optimum of 17.26 
bins. The standard deviation of the lower values is 1.58. Recall that this estimate only 
approximates the magnitude of the optimal value since we use the equidistant binning procedure 
instead of the equiprobable binning procedure. 

These results are in line with three independent rules of thumb for choosing the optimal number 

of equidistant bins. Mosteller and Tukey11 suggest to use 1/2n  as the number of bins, which in our 
case is 17.32. Another rule of thumb is due to Bendat and Piersol12 who suggest to use 

0.41.87( 1)n   which in our case becomes 46.86. Finally, Terrell and Scott13 suggest to use 1/3(2 )n  

bins, which becomes 8.43. In conclusion we select the range of 5 through 75 for the number of 
bins in our study, and show the IDL curves for {5,10,15, 20,50,75}h  in the previous Section. 

Indeed we observe a tendency for the IDL signal to deteriorate as h  grows to 50 and 75, 
confirming that we selected a suitable range. 
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Figure S6: The histogram of optimal values for h  for the entire 1-year maturity USD data (3145 returns), 
estimated from 300-day overlapping windows placed at 10-day intervals. The high values are close to the 
number of unique data points in the corresponding windows, which we interpret as outliers of the procedure. 
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S5 Comparison with previously introduced leading indicators 

S5.1 Critical slowing down in IRS rates 

The effect of critical slowing down14 can be measured by the coefficient of a first-order 
autoregression of the fluctuations of a signal3–5,15–18. Calculating this coefficient requires two 
parameters: the size of the smoothing kernel, which de-trends the signal, and the size of the 
sliding window, which is used to compute the autoregression. Here we investigate whether there 
is a set of parameter values for which the critical slowing down can provide a clear leading 
indicator of the Lehman Brothers bankruptcy. In Figure 2 in the main text we show a 
representative set of results, where the smoothing kernel has a standard deviation of 5 trade days 
and the sliding window to compute the autoregression was 500 and 1000 trade days. Here we 
show the results for a wide range of parameter values.  

The smoothing kernel is used to filter long-term price trends from the time series. We use a 
Gaussian smoothing kernel, following e.g. Dakos et al.15. The smoothing kernel is used to 
remove the long-term trend from a signal, because the effect of critical slowing down is detected 
in the short-term fluctuations of the time series: it is the time it takes for the price value to return 
to its long-term trend after a small perturbation. In effect we compute a running weighted 
average of each time series, where each price value becomes the weighted average of its 
neighbors, and subtract it from the original time series to obtain the de-trended signal. The 
weights are Gaussian distributed and the width of the distribution is the free parameter.  Figure 2 
in the main text was created using a Gaussian kernel with a standard deviation of 5 trade days, as 
in Dakos et al.15. Here we show the first-order autoregression coefficient for the parameter values 
5 and 10. 

At each time point the autoregression coefficient is calculated using the preceding w  price 
values, where w  is the size of the sliding window. The higher the value of w , the more accurate 
can the coefficient be calculated but the less sensitive it is to short-term effects. The first 
drawback that we find is that the calculation of the coefficient requires a considerably larger 
sliding window than for calculating the IDL.  Where the IDL indicator starts to be meaningful at 
a size of about 100 trade days, the autoregression coefficient requires a window size that exceeds 
500 trade days. This problem has already been recognized by others3–5,16. Figure 2 in the main 
text was created using a sliding window of 1000 trade days and a Gaussian smoothing kernel 
with a standard deviation of 5 trade days. In Figure S7, Figure S8, and Figure S9 we show the 
first-order autoregression coefficient of the de-trended IRS rates for the sliding window sizes 
500, 1000, 1250, and 1500 trade days, a Gaussian smoothing kernel with standard deviations 5 
and 10 trade days, for a representative sample of maturities: the first, second, fifth, and tenth 
maturity of each dataset. For the USD data this corresponds to maturities of 1 year, 2 years, 5 
years, and 10 years; in the EUR data to 2 years, 3 years, 6 years, and 12 years. 

We find a wide diversity of behaviors of the indicator near the Lehman Brothers bankruptcy, 
including upward trends (‘critical slowing down’), downward trends, and sudden increases and 
decreases shortly after the bankruptcy. We find that an early warning could be issued only in the 
EUR market for the 2-year maturity IRS, for a sliding window of around 1000 trade days but no 
more than about 1250 trade days. Our conclusion is that this indicator is not a reliable early 
warning signal. 
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Figure S7: The first-order autoregression coefficient of the fluctuations of the IRS levels for the first, second, 
fifth, and tenth maturity in the USD and EUR markets. The red dashed line is the warning threshold, 
calculated as two times the standard deviation above the mean of 750 trade days, which is the same as for the 
IDL indicator. This indicator of critical slowing down is calculated for a sliding window size of 1250 trade 
days (left) and 1500 trade days (right). The Gaussian smoothing kernel used had a standard deviation of 5 
trade days. 
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Figure S8: The first-order autoregression coefficient of the fluctuations of the IRS levels for the first, second, 
fifth, and tenth maturity in the USD and EUR markets. The red dashed line is the warning threshold, 
calculated as two times the standard deviation above the mean of 750 trade days, which is the same as for the 
IDL indicator. This indicator of critical slowing down is calculated for a sliding window size of 500 trade days 
(left) and 1000 trade days (right). The Gaussian smoothing kernel used had a standard deviation of 10 trade 
days. 
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Figure S9: The first-order autoregression coefficient of the fluctuations of the IRS levels for the first, second, 
fifth, and tenth maturity in the USD and EUR markets. The red dashed line is the warning threshold, 
calculated as two times the standard deviation above the mean of 750 trade days, which is the same as for the 
IDL indicator. This indicator of critical slowing down is calculated for a sliding window size of 1250 trade 
days (left) and 1500 trade days (right). The Gaussian smoothing kernel used had a standard deviation of 10 
trade days. 
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S5.2 The onset of a LIBOR-OIS spread as leading indicator 

During the build-up of the recent crisis in 2007 a LIBOR-OIS spread, the so-called ‘basis’ in 
swap contracts emerged. The prices of the same swap but with different frequencies of variable 
payments had always been roughly equal, but around August 2007 the prices of swaps with less 
frequent payments started to increase. This is a very significant event that had never occurred 
before. The phenomenon is a symptom of calculating the risk of default of a financial institute, or 
in other words, a lack of trust in the stability of financial institutes19. The price difference is 
essentially an insurance premium to compensate the risk that the variable interest payer would 
default during the swap contract’s duration. Such a default had hardly been considered before 
2007. 

The question is whether the onset of a basis in interest rates can be used to anticipate the 
bankruptcy of Lehman Brothers. Therefore we interpret the basis as a leading indicator and test 
whether it could be used as an early warning for the bankruptcy. As warning threshold we use the 
same definition as for all other leading indicators, namely three times the standard deviation 
above the mean of a sliding window of s=400 trade days. In addition, we test the case for a 
sliding window of s=200 and s=800 trade days. As a basis we use the daily differences between 
the 3-months (3M) LIBOR rates, which is based on a financial contract with one single payment, 
and the 3-months overnight indexed swaps (OIS), which have daily payments. The first reason 
for taking the difference with the 3M swaps is that it is the most liquidly traded; the second 
reason is that it is the same frequency as the USD data analyzed in the main text and here. 

A 3M-OIS swap is a different type of swap from an IRS which party A and B can negotiate. 
Party A pays x  USD to B immediately after signing the contract, and B pays back 

LIBOR 3/12x x    to A after three months. In such a swap there is no notional exchange; only 
one fixed rate is exchanged with one floating rate. This floating rate is the average daily interest 
rate cumulated over the period of three months. There is also more credit risk in such swaps: if B 
defaults then A loses its x  USD. 

See Figure S10 for the 3M-OIS interest rate and the three different warning thresholds. Although 
in each case there are two periods where a warning is issued, neither warning can be used to 
anticipate the Lehman Brothers bankruptcy. The first warning that lasts at least two days are at  
-291 trade days (s=200, lasting 33 days), -285 (s=400, lasting 29 days), and -285 (s=800, lasting 
47 days). The basis may arguably be warning for a significant financial event around this time 19, 
however it is too early and too short-lasting to be used to anticipate the Lehman Brothers 
bankruptcy. The second warning is consistently too late (starting 3, 9, and 4 trade days after the 
bankruptcy), so it could be interpreted more as a consequence of the bankruptcy rather than 
anticipating it. 
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Figure S10: The basis in the USD IRS rates in the time span March 2006 through November 2009. The red 
dashed curve is the warning threshold, computed as three times the standard deviation above the mean of a 
sliding window of s=200, s=400, and s=800 trade days respectively. As a basis we use the daily differences 
between the swap rates with a variable payments frequency of three months (3M) and overnight indexed 
swaps (OIS), which have a daily frequency. Time 0 on the x-axis corresponds to the day of the Lehman 
Brothers bankruptcy.  
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S5.3 Critical slowing down in IRS spread levels 

A traditional financial indicator is the ‘spread’ of (in this case) IRSs across maturities20. It is 
already evident from the IRS prices plot in Figure 1 in the main text as well as the cross-maturity 
variance plots in Figure 3 that the spread levels themselves do not provide an early warning for 
the Lehman Brothers bankruptcy. Nonetheless, since they are often used as underlying indices in 
complex interest rate derivatives (‘spread options’ 21), it is possible that the critical slowing down 
(CSD) indicator applied to the spread levels provides an early warning signal. We already 
showed in Section S5.1 that the CSD does not anticipate the bankruptcy when it is applied to the 
original IRS levels. 

We compute the spread levels as the daily differences of IRSs of various maturities compared to 
IRSs with a 1-year maturity (USD) or 2-year maturity (EUR). In other words, in USD the 
smallest spread is the 2-year IRS rate minus the 1-year IRS rate, then the 3-year IRS rate minus 
the 1-year IRS rate, etc. Next we calculate the first-order autoregression coefficient as in Figure 2 
in the main text with a sliding window of 1000 and 1500 trade days and a Gaussian smoothing 
kernel with a standard deviation of 5 trade days. The warning threshold is computed as two 
standard deviations above the mean of 750 trade days, as before. The results are summarized in 
Figure S11 for representative parameter values. 

Interestingly, the effect of critical slowing down is more apparent in the spread levels than in the 
original IRS rates, which were shown in Section S5.1. Of the 16 panels we find an early warning 
in two panels, namely for the USD spreads for 1500w  , for the 2y-1y and 5y-1y spreads. 
However we also observe all types of other possible behaviors of the indicator, especially for 
different window sizes, but even for the same parameter values for different maturities (3y-1y 
and 10y-1y). More research into this indicator applied to the IRS data is needed to understand 
why it is so sensitive to the choice of parameters and maturity.  

Lastly we note that the sliding window size that generates an early warning is 1500 trade days, 
which means that each regression is performed on data of about 6 calendar years. The indicator 
can therefore measure only long-term trends of stability in the financial markets and is not 
sensitive to short-term critical transitions such as the Lehman Brothers bankruptcy.  
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Figure S11: The first-order autoregression coefficient of de-trended IRS spread levels (sliding window sizes 
1000 and 1500) and a warning threshold computed as two standard deviations above the mean of 750 trade 
days. A caption such as ‘2y-1y’ denotes the spread level between a 2-year IRS and a 1-year IRS, i.e., the daily 
difference of their prices. Time 0 on the x-axis corresponds to the day of the Lehman Brothers bankruptcy. 
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S6 Verification of IDL using generated time series 

Calculating the IDL of generated time series allows us to address two questions. Firstly, does the 
IDL curve contain peaks even if the time series are uncorrelated (false alarms)? Secondly, does 
the IDL curve contain a peak at the time where we let the time series correlate? 

S6.1 Generating the time series 

The generated data consists of 15 time series which consist of 3145 real-valued elements. These 
dimensions are equal to that of the USD IRS data so that the verification in this section is as 
comparable as possible to the real data used in the main text. 

The first time series, i.e. the first ‘maturity’, is a copy of the 1-year USD IRS returns. Each 
subsequent i th time series is a vector of random values, with a mean and standard deviation that 
equals that of the corresponding i th maturity IRS data in the USD currency. The exception to this 
rule is a range of 500 elements starting at the 2000th element, where an artificial correlation is 
introduced as follows. The values of the elements 2000,…,2499 in the i th time series, excluding

1i  , is a randomized copy of the values of the ( 1)i  th time series. The randomization is an 

added noise factor that has a zero mean and a standard deviation s , which is the free parameter.  

S6.2 Results 

The lower the value of s , the higher the correlation between subsequent time series, and 
expectedly the higher the IDL. In other words, the higher the value of s , the less information 
about the first time series propagates through subsequent time series. Therefore we expect that 
the IDL peaks during the 500 correlated ‘trade days’ with a magnitude that decays for increasing 
s . In the absence of correlations, we expect that the IDL curve contains no discernible peaks. 

In Figure S12 we show the IDL of the generated data for  0.1,0.5s   and for the case of 

uncorrelated time series. The IDL is calculated using a sliding window size of 300w   and 
number of bins 10h  , matching the parameter used in the main text. The x-axis is equal to the 
USD IDL plot in Figure 1, and the period of serial correlation of 500 trade days is indicated by 
the grey area. 

Indeed we observe that the IDL peaks during the period of correlated elements among 
subsequent time series, confirming our hypothesis that the IDL is capable of detecting 
correlations between subsequent maturities. The delay of the peak compared to the start of the 
grey area is expected because a sliding window is used, and no preceding gradual onset of 
correlation is generated. 

Further we observe that the IDL does not contain significant peaks in the absence of correlations, 
suggesting that the IDL curve does not tend to generate ‘false positive’ warnings, i.e., warnings 
in the absence of correlated time series. We observe spurious IDL values not exceeding a value 
of 0.2, which we also observe in the initial low-IDL period in the USD market in Figure 1 in the 
main text. This suggests that these fluctuations in IDL in Figure 1 do not necessarily indicate 
small instabilities in the market during this period. 
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Figure S12: The IDL indicator computed of generated time series. The time series are uncorrelated except 

during the time points 439,...,39  (grey area; the 2000th trade day until the 2500th); the higher s , the 

weaker the serial correlation. The sliding window size is 300w   and the bin sizes 10h  , corresponding to 
the parameter values used in the main text. 
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S7 Choosing a threshold for warning signals 

In order to issue warnings for imminent critical events in an objective manner a warning 
threshold must be defined. On a given trade day the warning signal is ‘on’ if the IDL indicator is 
higher than this threshold, and it is ‘off’ otherwise. Typically, the threshold is calculated as a 
number of standard deviations above the long-term mean of the leading indicator in order to 
distinguish structural increases from fluctuations. This definition requires two parameters: the 
size of the sliding window s  used to compute the ‘long-term’ means and standard deviations, 
and the number of standard deviations n  to add to the mean. A universal choice for these 
parameters does not exist. Therefore we fit n  and s  to a desired magnitude of market crashes 
that is detected. 

The magnitude of the market crashes that a leading indicator detects has a positive relation with 
the mean time between warnings. That is, the longer the duration until the next warning, the less 
sensitive is the warning signal to small peaks in the leading indicator, and consequently the larger 
the market crash must be in order to let the leading indicator exceed the warning threshold. The 
reasoning behind this relation is the widespread evidence that market crashes are not statistical 
outliers: instead they are part of a continuous, fat-tailed size distribution of critical events22,23, in 
which small events are abundant and large events are increasingly rare. 

We estimate the mean ‘time-to-warning’ for the IDL indicator for a range of values for n  and s  
by extrapolating the IDL indicator of Figure 1 in the main text. The IDL curves in this figure are 
too short to reliably estimate the mean time-to-warning it induces, so we generate longer time 
series with the same autoregressive coefficients as the IDL curves. In Figure S13 we show the 

autoregressive coefficients ka  for both IDL curves up to lag 10p  , using the autoregressive 

model AR( )p  defined by 

 
0

p

k t k t
k

a y 


  , 

where t  is zero-mean white noise and the coefficients are normalized so that 0 1a  . 
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Figure S13: The autoregression coefficients of the IDL curves for the USD (red crosses) and EUR (blue 
circles) markets, up to lag 10. The IDL curves used are those in Figure 1 in the main text. 
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For the extrapolation we choose the coefficients of the IDL curve for the USD data. This is 
reasonable not only because the Lehman Brothers bankruptcy occurred in the U.S., but also 
because the choice of n  and s  seem more crucial for the USD market. In the EUR market the 
bankruptcy occurred during a period of relative stability, so the preceding onset of instability is 
distinct and easily detected. In the USD market, on the other hand, the bankruptcy is part of a 
larger period of growing instability, so whether or not the onset of ‘instability-inside-instability’ 
would be detected is more dependent on the parameter values. Based on Figure S13 we find that 
only first two coefficients are significantly different from zero, so we compute the coefficients 

for an AR(2)  model, finding 1 0.8316a    and 2 0.1681a   . We use this AR(2)  model to 

generate an IDL curve for an equivalent of 500 years, assuming that each year consists of 250 
trade days. 

We find that warnings are highly clustered, see Figure S14. By far most warnings are less than a 
quarter year apart ( 250 / 4 62.5  trade days). Observing the two insets in Figure 1 in the main 
text, this observation makes intuitive sense: during a period of increasing instability, the leading 
indicator will reach the threshold and may be alternatingly above and below the threshold. This 
happens because the threshold grows along with the indicator. 
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Figure S14: The distribution of the number of trade days between two warnings, generated by the simulated 
AR(2) IDL curve which spans 125000 trade days. The width of each bar is 250/4 = 62.5 trade days, which 
corresponds to a quarter year. The frequency of the time between warnings being less than 62.5 trade days is 
784, which falls outside of the plotted region in order to make the rest visible. Within this left-most group, the 
number of warnings that are consecutive (i.e., the minimum of one day apart) is 307. 
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As a result we calculate the time-to-warning as the mean time between clusters of warnings. 
More precisely, we compute the average of the times between warnings that exceed a quarter 
year. We show the result for {2,3}n  and {250,300,350,...,1000}s  in Figure S14. For each 

value of n  there is a roughly linear relation between the sliding window size s  and the time-to-
warning. The times between warnings vary roughly between one and ten years, which is a 
magnitude that is consistent with our intuition that financial crises happen in the order of years, 
but not tens of years. 
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Figure S15: The expected number of years between two clusters of warnings induced by the simulated AR(2) 

IDL indicator. The red dashed line corresponds to 2n   and the blue sold line to 3n  . Each error bar is 
one standard deviation. 
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Selecting the appropriate mean time-to-warning is a matter of the magnitude of market crashes 
that one is interested in. Here we use statistics gathered by Laeven and Valencia24 from the 
Systemic Banking Crises Database to find a suitable value. This database records market crashes 
during 1970--2011 in three forms of increasing severity: single crises, twin crises, and triple 
crises. A triple crisis is a banking crisis that coincides with a currency crises as well as a 
sovereign crisis; a twin crisis is any pair of these crises. We choose the middle way between 
twins and triplets as our magnitude of interest, so we compute the average of their frequencies 
and select it as our time-to-warning. According to Laeven and Valencia24, the global frequency of 
twin crises is once in 0.54  years and the frequency of triple crises is once in 5.13  years. The 
average between the two is a time between crises of 2.83 years. 

This value falls in the range for 2n   in Figure S15. To find the corresponding value for s  we 
perform a linear regression on the mean values of the time-to-warning curve, in order to filter out 
the fluctuations. For the AR(2) -generated IDL indicator we find an optimal value 691.44s  ; if 

instead we use AR(3)  to generate the IDL then the result is 709.46s  . 

We repeat the procedure for the critical slowing down indicator shown in Figure 2 in the main 
text. Here we use AR(1) and find 701.71s   (EUR) and 695.40s   (USD) for 1000w  . 

Since all these values are similar we round them up to the nearest quarter year which is 750 trade 
days, corresponding to three calendar years.  

In conclusion, we find the parameter values 2n   and 750s   to generate clusters of warnings 
about once in three years, which is a tradeoff between the frequency of the most severe crises 
(triplets) and the medium crises (twins). 

S8 The data 

We make all data sets publicly available online in the SI. 

S9 The program code 

We have performed all analyses and created all plots using Matlab 2010b. All necessary source 
code to reproduce our results is available online in the SI. 
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