SUPPORTING INFORMATION for

Influence of Active Site Location on Catalytic Activity in *de Novo*-Designed Zinc Metalloenzymes

Melissa L. Zastrow and Vincent L. Pecoraro*

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States

Contents

Folding as monitored by circular dichroism at pH 8.5	S2
Comparison of unfolding through guanidine hydrochloride denaturation at pH 8.5	S 3
Comparison of unfolding in the presence and absence of Zn(II) through guanidine hydrochloride denaturation	S4
Competitive Zincon binding titrations at pH 7.5 for $(\mathbf{TRIL}_2WL23H)_3$, $[Hg(II)]_S(\mathbf{TRIL}_9HL23C)_3^-$, and $[Hg(II)]_S(\mathbf{TRIL}_9CL19H)_3^-$	S 5
Competitive Zincon binding titrations at pH 9.0 for [Hg(II)] _S (TRI L9CL23H) ₃	S6
Competitive Zincon binding titrations at pH 9.0 for $(\mathbf{TRIL}_2WL23H)_3$, $[Hg(II)]_S(\mathbf{TRIL}_9HL23C)_3^-$, and $[Hg(II)]_S(\mathbf{TRIL}_9CL19H)_3^-$	S 7
pH dependency of k_{cat} and K_M parameters for pNPA hydrolysis by Zn(II)-bound TRI peptides	S 8
Inhibition of $[Hg(II)]_{s}[Zn(II)(H_{2}O/OH^{-})]_{N}(TRIL9CL23H)_{3}^{n+}$ -catalyzed <i>p</i> NPA hydrolysis by acetate at pH 8.5	S 9
Inhibition of $[Zn(II)(H_2O/OH^{-})]_N[Hg(II)]_S(TRIL9HL23C)_3^{n+}$ -catalyzed <i>p</i> NPA hydrolysis by acetate at pH 8.5	S10
Inhibition of $[Hg(II)]_{S}[Zn(II)(H_{2}O/OH^{-})]_{N}(TRIL9CL19H)_{3}^{n+}$ -catalyzed <i>p</i> NPA hydrolysis by acetate at pH 8.5	S11

Figure S1. Folding of $(\mathbf{TRIL}9\mathrm{HL23C})_3^{3^{\circ}}$ (apo and +1/3 Hg(II)) and $(\mathbf{TRIL}9\mathrm{CL19H})_3^{3^{\circ}}$ (apo and +1/3 Hg(II)) as monitored by circular dichroism. a) CD spectra of $(\mathbf{TRIL}9\mathrm{HL23C})_3^{3^{\circ}}$ and $(\mathbf{TRIL}9\mathrm{HL23C})_3^{3^{\circ}} + 1/3$ Hg(II) at pH 8.5 and 25°C. The molar ellipticities [Θ] at 222 nm are -25501 and -27210° dmol⁻¹ cm², respectively. b) Guanidine hydrochloride denaturation titrations represented by the molar ellipticity values [Θ] at 222 nm vs denaturant concentration for $(\mathbf{TRIL}9\mathrm{HL23C})_3^{3^{\circ}}$ and $(\mathbf{TRIL}9\mathrm{HL23C})_3^{3^{\circ}} + 1/3$ Hg(II). c) CD spectra of $(\mathbf{TRIL}9\mathrm{CL19H})_3^{3^{\circ}}$ and $(\mathbf{TRIL}9\mathrm{CL19H})_3^{3^{\circ}} + 1/3$ Hg(II) at pH 8.5 and 25°C. The molar ellipticities [Θ] at 222 nm are -26872 and -29002° dmol⁻¹ cm², respectively. d) Guanidine hydrochloride denaturation titrations represented by the molar ellipticity values [Θ] at 222 nm vs denaturant concentration for ($\mathbf{TRIL}9\mathrm{CL19H})_3^{3^{\circ}} + 1/3$ Hg(II) at pH 8.5 and 25°C. The molar ellipticities [Θ] at 222 nm are -26872 and -29002° dmol⁻¹ cm², respectively. d) Guanidine hydrochloride denaturation titrations represented by the molar ellipticity values [Θ] at 222 nm vs denaturant concentration for ($\mathbf{TRIL}9\mathrm{CL19H})_3^{3^{\circ}} + 1/3$ Hg(II). As for our previously reported His-containing \mathbf{TRI} peptides, we have not reported a quantitative determination of free energy values because the denaturation curves for these peptides do not level off at zero concentration of denaturant.¹

Figure S2. Comparison of the unfolding of $(\mathbf{TRIL}9\mathrm{HL23C})_3^{3^2}$ (apo and +1/3 Hg(II)) and $(\mathbf{TRIL}9\mathrm{CL19H})_3^{3^2}$ (apo and +1/3 Hg(II)) to $(\mathbf{TRIL}23\mathrm{H})_3$ and $(\mathbf{TRIL}9\mathrm{CL23H})_3^{3^2}$ (apo and +1/3 Hg(II))¹. Guanidine hydrochloride denaturation titrations at pH 8.5 represented by the molar ellipticity values [Θ] at 222 nm vs denaturant concentration for $(\mathbf{TRIL}23\mathrm{H})_3$, $(\mathbf{TRIL}9\mathrm{CL23H})_3^{3^2}$, $(\mathbf{TRIL}9\mathrm{HL23C})_3^{3^2}$, and $(\mathbf{TRIL}9\mathrm{CL19H})_3^{3^2}$. For each of the Cys-containing peptides, when comparing the apo versions and the Hg(II)-bound peptides, the midpoint is shifted to a higher denaturant concentration, demonstrating that the structural site confers stability on each of the constructs.

Figure S3. Comparison of the unfolding of $(\mathbf{TRIL9CL23H})_3^{3-} + 1/3 \operatorname{Hg}(II)$ in the presence of 0, 1, and 5 equivalents of $\operatorname{Zn}(II)$.¹ Guanidine hydrochloride denaturation titrations at pH 8.5 represented by the molar ellipticity values [Θ] at 222 nm vs denaturant concentration for $(\mathbf{TRIL9CL19H})_3^{3-} + 1/3 \operatorname{Hg}(II)$ (\bullet)¹, $(\mathbf{TRIL9CL19H})_3^{3-} + 1/3 \operatorname{Hg}(II)$ (\bullet)¹, $(\mathbf{TRIL9CL19H})_3^{3-} + 1/3 \operatorname{Hg}(II)$ (\bullet)¹, $(\mathbf{TRIL9CL19H})_3^{3-} + 1/3 \operatorname{Hg}(II)$ (\bullet). There is no shift in the midpoint of unfolding in the presence of Zn(II).

Figure S4. Competitive titrations against Zincon at pH 7.5 for $(\mathbf{TRIL}_{2}WL23H)_3$, $[Hg(II)]_{S}(\mathbf{TRIL}_{9}HL23C)_3^-$, and $[Hg(II)]_{S}(\mathbf{TRIL}_{9}CL19H)_3^-$. Plots of absorbances at 620 nm vs [Zincon] for the forward titrations of a) $(\mathbf{TRIL}_{2}WL23H)_3$, b) $[Hg(II)]_{S}(\mathbf{TRIL}_{9}HL23C)_3^-$, and c) $[Hg(II)]_{S}(\mathbf{TRIL}_{9}HL23C)_3^-$, and vs $[pep_3]$ for the reverse titrations of d) $(\mathbf{TRIL}_{2}WL23H)_3$, e) $[Hg(II)]_{S}(\mathbf{TRIL}_{9}HL23C)_3^-$, and f) $[Hg(II)]_{S}(\mathbf{TRIL}_{9}HL23C)_3^-$.

Figure S5. Competitive Zincon binding titrations at pH 9.0 for $[Hg(II)]_{S}(TRIL9CL23H)_{3}^{-}$ in the forward $(Zn(II)pep_{3} + Zincon)$ and reverse $(Zn(II)Zi + pep_{3})$ direction. a) Representative UV-visible spectra for the titration in the forward direction and b) in the reverse direction. c) Plot of absorbance at 620 nm as a function of increasing [Zincon] for the forward titration and d) as a function of increasing [pep_{3}] for the reverse titration.

Figure S6. Competitive titrations against Zincon at pH 9.0 for (**TRIL**2WL23H)₃, $[Hg(II)]_{S}$ (**TRIL**9HL23C)₃⁻, and $[Hg(II)]_{S}$ (**TRIL**9CL19H)₃⁻. Plots of absorbances at 620 nm vs [Zincon] for the forward titrations of a) (**TRIL**2WL23H)₃, b) $[Hg(II)]_{S}$ (**TRIL**9HL23C)₃⁻, and c) $[Hg(II)]_{S}$ (**TRIL**9CL19H)₃⁻ and vs [pep₃] for the reverse titrations of d) (**TRIL**2WL23H)₃, e) $[Hg(II)]_{S}$ (**TRIL**9HL23C)₃⁻, and f) $[Hg(II)]_{S}$ (**TRIL**9CL19H)₃⁻.

Figure S7. pH dependency of a) k_{cat} and b) K_{M} parameters for *p*NPA hydrolysis by Zn(II)His₃O sites in the **TRI** peptides. Results are shown for $[Zn(II)(H_2O/OH^-)]_N(TRIL2WL23H)_3^{n+}$, $[Hg(II)]_S[Zn(II)(H_2O/OH^-)]_N(TRIL9CL23H)_3^{n+}, 1$ $[Zn(II)(H_2O/OH^-)]_N[Hg(II)]_S[TRIL9HL23C)_3^{n+}$, and $[Hg(II)]_S[Zn(II)(H_2O/OH^-)]_N(TRIL9CL19H)_3^{n+}$. Error bars result from fitting all individual initial rates measured (three per concentration of substrate, without averaging) to the Michaelis-Menten equation in Prism 5 (GraphPad Software).

Figure S8. Inhibition of 20 μ M [Hg(II)]_S[Zn(II)(H₂O/OH⁻)]_N(**TRI**L9CL23H)₃ⁿ⁺-catalyzed *p*NPA hydrolysis by acetate at pH 8.5. a) Initial rates as a function of substrate concentration in the presence of 0, 0.1, 0.2, 0.4, and 0.6 M potassium acetate fitted to a competitive inhibition model in Prism 5 (GraphPad Software). The global data yields the reported *K*_I and corresponding error. Data shown consists of each individual measured initial rate and does not represent averages. Fitting the same data to a mixed inhibition model yielded $\alpha \approx 14$ supporting the assignment of a competitive inhibition model.² b) Lineweaver-Burke (double-reciprocal) plots corresponding to the data in a). Visual inspection of the intersection of linear fits to each dataset (at the y-axis) also supports a competitive inhibition model.

Figure S9. Inhibition of 50 μ M [Zn(II)(H₂O/OH)]_N[Hg(II)]_S(**TRIL**9HL23C)₃^{*n*+}-catalyzed *p*NPA hydrolysis by acetate at pH 8.5. a) Initial rates as a function of substrate concentration in the presence of 0, 0.1, 0.25, and 0.5 M potassium acetate fitted to a competitive inhibition model in Prism 5 (GraphPad Software). The global data yields the reported *K*_I and corresponding error. Data shown consists of each measured individual initial rate and does not represent averages. Fitting the same data to a mixed inhibition model yielded $\alpha \approx 3 \times 10^{13}$ supporting the assignment of a competitive inhibition model.² b) Lineweaver-Burke (double-reciprocal) plots corresponding to the data in a). Visual inspection of the intersection of linear fits to each dataset (at the y-axis) also supports a competitive inhibition model.

Figure S10. Inhibition of 50 μ M [Hg(II)]_S[Zn(II)(H₂O/OH⁻)]_N(**TRI**L9CL19H)₃^{*n*+}-catalyzed *p*NPA hydrolysis by acetate at pH 8.5. a) Initial rates as a function of substrate concentration in the presence of 0, 0.2, 0.4, and 0.6 M potassium acetate fitted to a competitive inhibition model in Prism 5 (GraphPad Software). The global data yields the reported *K*_I and corresponding error. Data shown consists of each measured individual initial rate and does not represent averages. Fitting the same data to a mixed inhibition model yielded $\alpha \approx 31$ supporting the assignment of a competitive inhibition model.² b) Lineweaver-Burke (double-reciprocal) plots corresponding to the data in a). Visual inspection of the intersection of linear fits to each dataset (at the y-axis) also supports a competitive inhibition model.

REFERENCES

- Zastrow, M. L.; Peacock, A. F. A.; Stuckey, J. A.; Pecoraro, V. L. *Nat. Chem.* **2012**, *4*, 118–23.
- (2) Marangoni, A. G. Enzyme Kinetics; reversible enzyme inhibition; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002; pp 61-69.