Characterization and Developmental Expression of a Drosophila ras Oncogene

BRIAN MOZER, ROBIN MARLOR, SUSAN PARKHURST, AND VICTOR CORCES*

Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218

Received 8 November 1984/Accepted 14 December 1984

We cloned a *Drosophila melanogaster ras* gene (Dmras64B) on the basis of its homology to the *ras* oncogen from Harvey murine sarcoma virus. This gene mapped at chromosomal position 64B on the left arm of the third chromosome. Sequencing of Dmras64B revealed extensive amino acid homology with the proteins encoded by the human and *Saccharomyces cerevisiae ras* genes. The coding region of the *Drosophila* gene is interrupted by two introns located in different positions with respect to its human counterpart. Dmras64B encodes three different RNAs (1.6, 2.1, and 2.6 kilobases long) that are constantly expressed throughout the development of the fly.

The transformed phenotype of tumor cells has been associated with the activation of normal cellular oncogenes by a variety of different processes. In the case of the *ras* genes, which were originally isolated from the Harvey and Kirsten murine sarcoma viruses, this activation results from somatic mutation, giving rise to a protein (p21) with an altered amino acid sequence (1, 14, 16-19, 21). Elevated expression of the *ras* proteins can also transform animal cells (2, 6). Nothing is known, however, about the molecular mechanisms by which the p21 *ras*-encoded protein causes the transformed phenotype.

To gain more insight into the biochemical and cellular roles of the ras gene family, we have begun a study of these genes in Drosophila melanogaster, taking advantage of the fact that they are so highly conserved during evolution (15). A Charon 4A Drosophila genomic library (obtained from T. Maniatis) was screened by using the BglII DNA fragment containing the Harvey murine sarcoma virus ras (Ha-ras) gene as a probe (3, 8). The hybridization was done in 30% formamide-0.75 M NaCl-0.075 M sodium citrate-0.2% polyvinylpyrrolidone-0.2% bovine serum albumin-0.2% Ficoll-1.0% sodium dodecyl sulfate-denatured calf thymus DNA (100 µg/ml) at 37°C for 12 h. The filters were then washed twice with 0.75 M NaCl-0.075 M sodium citrate at room temperature and twice with the same buffer at 60°C. Of the several positive clones obtained, one, designated λ -2A, was studied in detail. Figure 1 shows the restriction map of a PstI subfragment, obtained from the λ clone, which contains all the sequences homologous to the Ha-ras oncogene. This DNA fragment was sequenced by using the protocol of Maxam and Gilbert (11) (see Fig. 1 for a diagram of the sequencing strategy), and the amino acid sequence of the different open reading frames was compared with that of the human and Saccharomyces cerevisiae ras oncogenes. We found three regions of homology interrupted by two stretches of nonhomologous sequences. These regions of nonhomologous sequences are likely to be introns because protein termination codons exist in all three possible reading frames. The precise location of the introns within the protein-coding regions was assigned on the basis of three different criteria: the existence of a consensus donor and acceptor splice site sequence, the maintenance of an open

reading frame, and the maximization of the homology with human and yeast *ras* protein sequences.

Figure 2 shows the nucleotide sequence of the coding region of Dmras64B. The positions of the putative introns are indicated by open spaces in the corresponding amino acid sequence; we have also included several nucleotides from the bordering region of the introns to show the seguence of the consensus splice sites. The vertical arrows above the sequences indicate the locations of the introns in the human gene. The protein encoded by the Drosophila ras gene contains 195 amino acids and has a predicted molecular weight of 22,700. For the purpose of comparison with the yeast and human ras proteins, the amino acid sequences of both of the proteins encoded by the yeast RASI and human ras genes (7, 13) are also shown in Fig. 2. It is apparent from the sequence comparison that the Dmras64B protein contains two extra amino acids at the amino-terminal end when compared with the human ras protein, but four amino acids fewer than the yeast RAS1 gene product. For the next 90 amino acids, the Drosophila protein presents a high degree of homology (approximately 80%) with both yeast and

FIG. 1. Restriction map of the DNA sequences containing the Dmras64B gene. A Charon 4A Drosophila genomic library was screened by using a cloned Ha-ras gene as a probe (3, 8). Of the several positive clones obtained, one was analyzed in detail. By Southern blot analysis with the Ha-ras gene as a probe, it was found that all the ras-homologous sequences were contained within a 3.7-kilobase PstI fragment. The restriction map of this fragment is shown above. Also shown is the position of the introns and coding exons deduced after a sequence analysis of this fragment. The lower part of the figure diagrams the sequencing strategy used to determine the nucleotide sequence of the Dmras64B gene.

^{*} Corresponding author.

.

met	gln	gly	asn	lyş	ÅTG met ser	CAG gln thr	ATG met ile met	CAA gln arg thr	ACG thr glu glu	TAC tyr tyr tyr	AAA lys lys lys	CTG leu ile leu	GTG val val val	GTC val val val	GTC val val val	GGC gly gly gly	GGC gly gly ala	GGC gly gly gly	GGC gly gly gly	GTG val val val	Drosophila Drosophila yeast RAS1 H-ras
66C gly gly gly	AAG 1 ys 1 ys 1 ys	TCA ser ser ser	20 6C6 ala ala ala	ATA ile leu leu	ACG thr thr	ATA ile ile	CAG gln gln gln	TTC phe leu	ATC ile ile	CAA gln gln gln	gta	agc	cgc	cca	•••		cta	atc	ttg	cag	Drosophila Drosophila yeast RASi H-ras
AGC ser ser asn	TAC tyr tyr his	30 TTC phe phe	STC val val val	AC6 thr asp asp	GAC asp gly glu	TAC tyr tyr tyr	GAT asp asp asp	CCC pro pro	ACC thr thr	ATT ile ile ile	GAA glu glu glu	40 GAC asp asp asp	TCG ser ser ser	TAC tyr tyr tyr	ACG thr arg arg	AAG lys lys lys	CAG gln gln gln	TGC cys val val	AAC asn val val	ATC ile ile	Drosophila Drosophila yeast RAS1 H-ras
GAC asp asp asp	50 GAT asp gly	gtg	cca	gcc	***			tac	cct	tac	cag	ATT ile	CAT his	AAT asn	AAC asn glu glu	CTS leu val thr	ATA ile ser cys	TTT phe ile leu	TAC tyr leu leu	CTA leu asp asp	Drosophila Drosophila yeast RAS1 H-ras
60 GTT val ile ile	TTG leu leu leu	GAC asp asp asp	AC6 thr thr	GCT ala ala ala	66C gly gly gly	CAA gln gln gln	GAG glu glu glu	GAG glu glu glu	TTC phe tyr tyr	70 AGT ser ser	GCC ala ala ala	ATG met met	CGG arg arg arg	GAG glu glu asp	CAG gln gln gln	TAC tyr tyr EEE	AT6 met met	- CGC arg arg arg	80 TCC ser thr thr	66C gly gly gly	Drosophila Drosophila yeast RASI H-ras
GAG glu glu glu	66A gly gly gly	TTC phe phe	CTG leu leu leu	CTC leu leu cys	GTC val val val	TTC phe tyr phe	SCG ala ser ala	CTC leu val ile	90 AAC asn thr asn	GAT asp ser asn	CAT his arg thr	TCC ser asn lys	AGC ser ser ser	- TTC phe phe	GAT asp asp glu ===	GAG glu glu asp	ATC ile leu ile	CCC pro leu his	100 AAG lys ser gln	TTC phe tyr tyr	Drosophila Drosophila yeast RAS1 H-ras
CAG gln tyr arg	CGC arg gln glu	CAG gln gln gln	ATA ile ile ile	CTG leu gln lys	CGC arg arg arg	GTC val val val	AAG lys lys lys	110 GAT asp asp asp	CGC arg ser ser	GAC asp asp asp asp	6A6 glu tyr asp ^	TTC phe ile val	CCC pro pro pro	ATG met val met	CT6 leu val val ~	- met val leu	GTG val val val	120 86T gly gly gly	AAC asn asn asn	AAG 1ys 1ys	Drosophila Drosophila yeast RAS1 H-ras
TGC cys leu cys	GAC asp asp asp	CTB leu leu leu	AAG lys glu ala	CAC his asn ala	CAG gln glu arg	CAG gln arg thr	130 CAG gln gln val	GTG val val glu	TCC ser ser ser	CTA leu tyr arg	GAG glu glu gln	GAG glu asp =	GCG ala gly ala	CAG gln leu gln	AAC asn arg asp	- ACC thr leu leu	140 AGC ser ala ala	CGC arg lys arg	AAC asn gln ser	CTG leu leu tyr	Drosophila Drosophila yeast RAS1 H-ras
ATG met asn gly	ATC ile ala ile	CCC pro pro	TAC tyr phe tyr	ATC ile ileu ile	BAG glu glu glu	150 TGC cys thr thr	AGT ser ser ser	GCC ala ala ala ===	AAA lys lys lys	CTB leu gln thr	AGG arg ala arg	GTC val ile gln	AAC asn gly	BTC val val val	GAT asp glu === ^	160 CA8 gln glu asp	GCC ala ala ala	TTC phe phe	CAC his tyr tyr	8A6 glu ser thr	Drosophila Drosophila yeast RASI H-ras
CTC leu leu leu	STS val ile val	AGA arg arg arg	ATC ile leu glu	GT6 val val ile	170 CGC arg arg arg	AAG lys asp gln	TTC phé asp his	CAG gln gly lys	ATC ile gly leu	GCC ala lys arg	6A6 glu tyr lys	CGT arg asn leu	CCC pro ser asn	TTC phe met pro	180 ATC ile asn pro	GAG glu arg asp ^	CA6 gln gln glu	GAT asp leu ser	TAC tyr asp gly	AAG 1ys asn pro	Drosophila Drosophila yeast RASI H-ras
AAG lys thr gly	AAG lys cys	66C gly met	AAG lys ser	190 AGG arg cys	AAG lys lys	TGC Cys Cys Cys	TBC cys ile val	CTG leu ile leu	195 ATG met cys ser	- TAG ter ter ter											Drosophila Drosophila yeast RASi H-ras

• •

FIG. 2. Sequence analysis of the Dmras64B gene. The *PstI* fragment containing all the sequences homologous to the Ha-*ras* sequences was sequenced by using the protocol of Maxam and Gilbert (11). The DNA sequences encoding the different exons of the protein and the corresponding amino acid sequence are shown. Also shown are the amino acid sequences for the yeast *RAS1* and human *ras* proteins (H-*ras*) for the purpose of comparison. Amino acids 192 to 305 from the yeast protein (indicated by dotted lines at the end of the *RAS1* protein sequence) have not been represented since this region does not have a corresponding region in the *Drosophila* and human genes (7, 13). The positions of the putative introns in the *Drosophila* gene are indicated by empty spaces in the amino acid sequence and by dotted lines in the nucleotide sequence. The first and last several nucleotides in the intron sequence are denoted by lowercase letters. The positions of the

FIG. 3. In situ hybridization of Dmras64B to polytene chromosomes. Plasmid DNA containing the *Drosophila ras* gene was labeled with $[^{125}I]dCTP$ by nick translation and hybridized to third-instar larvae polytene chromosomes. Grains can be seen at chromosomal position 64B on the left arm of the third chromosome.

human genes, except for the first 9 amino acids of the third exon. In this region, the Dmras64B protein contains three additional amino acids. The degree of relatedness between the *Drosophila* genes and the yeast and human genes breaks down after amino acid 90, and the homology is only patchy for the next 80 amino acids (between 55 and 60%). There is no homology between any of the *ras* genes for the region between amino acids 170 and 190, and the *Drosophila ras* protein ends with the conserved sequence CysAAX (as does its human homolog), where A is an aliphatic amino acid and X is the terminal one (7, 13).

It is interesting that the degree of homology between the *Drosophila* protein and either the human or the yeast *ras* protein is almost the same and very similar to the degree of homology that exists between yeast and human *ras* proteins. The distribution of this homology along the protein chain follows a specific pattern that has been observed when the different human *ras* proteins are compared with themselves and with those of yeasts (7, 13). This distribution supports the hypothesis of Powers et al. (13), which suggests that the degree of conservation of the amino acid sequence in different regions of the *ras* protein defines several domains with functional significances in the physiological role of the protein. The fact that the putative introns are located within these functional domains and the positions of the introns are different in the *Drosophila* and human *ras* genes suggests

that the different exons of a protein may not correspond to functional units that are brought together during evolution to form a new protein.

These results differ from those described recently by Neuman-Silberberg et al. (12). They sequenced the same Drosophila ras gene and found no homology in the first portion of the protein-coding region when compared with the amino acid sequence of the human ras protein. We believe that the discrepancy in the results is due to the omission by Neuman-Silberberg et al. of two nucleotides in the DNA sequence of the Dmras64B gene in the region immediately upstream from the second exon of the protein. As a result of this, there is a change in the protein reading frame which causes a methionine residue to appear in the same reading frame as the ras protein. The DNA sequence that we have determined for the first intron (data not shown) contained a termination codon immediately before the second exon of the Drosophila ras protein when the proper reading frame was considered. We have found a stretch of 27 amino acids with more than 80% homology to the human and yeast ras proteins 646 kilobase pairs upstream from the second exon. This indicates that the sequence we have designated as the first exon truly represents the N-terminal region of the protein.

To determine the chromosomal location of the Dmras64B gene, plasmid DNA containing the *PstI* fragment shown in

introns in the human gene are indicated by vertical arrows over the nucleotide sequence. Symbols: ===, amino acids conserved between Dmras64B and the yeast RAS1 protein; $\land \land \land$, homology between Drosophila and human ras genes; —, amino acids that have been conserved between the yeast and human ras proteins (7, 13). We have used the symbols =, \land , and - to indicate conservative changes (gly and ala; glu and asp; lys and arg; or leu, val, and ile) in the amino acid composition of the ras proteins among the respective pairs of proteins to which we have referred.

Fig. 1 was labeled with [¹²⁵I]dCTP by nick translation and hybridized to polytene chromosomes from third-instar larvae salivary glands (4). Figure 3 shows the results of such an experiment. The hybridization is concentrated at chromosomal position 64B on the left arm of the third chromosome.

Since a yeast genome has two ras genes and the human genome contains three, we used genomic Southern blots to determine how many ras genes are present in the Drosophila genome. Total genomic DNA from Drosophila embryos was digested with different restriction enzymes, electrophoresed on agarose gels, transferred to nitrocellulose paper, and hybridized under different stringency conditions with labeled DNA from either Dmras64B or Ha-ras genes. The results of these experiments (data not shown) suggest that there are at least two, and most likely three, ras-like genes in the Drosophila genome. These results are in agreement with those of Neuman-Silberberg et al., who have recently demonstrated the existence of three different Drosophila ras genes (12). It may now be possible to delete one or all of the ras genes from D. melanogaster by using visible phenotypic markers located nearby; questions could then be asked about the effect that the absence of the ras-encoded protein has on the differentiation and development of the fly. In yeast cells it has been shown that deletion of both ras genes affects spore viability (10, 20).

The question of the role of the ras protein on the development of D. melanogaster is of special interest, since it is known that dominant mutations in protein p21 produce a transformed phenotype in mouse cells. To study the developmental expression of Dmras64B, we prepared total RNA from different stages of Drosophila development by lysing the tissues in 4 M guanidine isothiocyanate-0.2% lauroyl sarcosine-0.15 M mercaptoethanol-0.012 M EDTA-0.15 M Tris-HCl, (pH 7.5) in a Dounce homogenizer. After the addition of an equal volume of 0.1 M sodium acetate (pH 5.0) and three cycles of phenol extractions at 65°C followed by 10 min on ice, the RNA was precipitated with 2 volumes of ethanol (5). Polyadenylate-containing RNA was then prepared by chromatography on oligo deoxythymidylate-cellulose, and 5 µg of each RNA sample was electrophoresed on a 0.8% agarose-formaldehyde gel, transferred to a Gene Screen membrane (New England Nuclear Corp.), and hybridized with ³²P-labeled Dmras64B DNA (5). The results of this experiment are shown in Fig. 4.

There are three different RNAs homologous to the *Pst* fragment of Dmras64B, with sizes of 1.6, 2.1, and 2.6 kilobases, respectively. The amounts of these RNAs remain constant in the different stages during the development of the fly. Since the hybridization conditions used to detect these RNAs in the experiment described in the legend to Fig. 4 were very stringent, we do not think that some of these RNAs could be originating from other *ras* loci present elsewhere in the *Drosophila* genome. Furthermore, Dmras64B only hybridizes to one chromosome location under the same hybridization conditions.

These results suggest that the *ras*-encoded protein may not have a role in the induction of cellular differentiation or proliferation but that its function may be related to the maintenance of the proliferative state. Since it is possible to obtain proper expression of a cloned gene after the transformation into *Drosophila* embryos, the problem of the biochemical role of the *ras* protein can be easily approached by using this system. We are now in the process of obtaining a mutated Dmras64B gene which encodes an altered protein containing a valine residue instead of a glycine residue at position 14. This type of substitution produces the tumori-

FIG. 4. Electrophoretic analysis of Dmras64B complementary RNA during *Drosophila* development. The different lanes in the gel contain: embryo RNA (lane 1); early and late first-instar larvae RNA (lanes 2 and 3, respectively); early and late second-instar larvae RNA (lanes 4 and 5, respectively); third-instar larvae RNA (lane 6); prepupae RNA (lane 7); RNA from different stages of pupal development 24 h apart (lanes 8 through 11); and RNA from adult flies (lane 12). The same filter was subsequently hybridized with a plasmid containing the 5C *Drosophila* actin gene (9) to control for the amount of RNA loaded on the gel (data not shown).

genic phenotype in mammalian systems (1, 14, 17-19, 21). The altered gene will be introduced into the *D. melanogaster* germ line by P-element-mediated transformation, and the effect of this dominant mutation on the development of the fly will be studied. If the transformed adult flies have a visible phenotype, it may be possible to obtain mutations in other genes that cause a reversion of the transformed phenotype. Following this kind of approach, it may be feasible to isolate genes whose protein products interact physically or biochemically with the *ras*-encoded protein and, therefore, to determine the biochemical pathways by which a mutation in the ras protein causes the tumorigenic phenotype.

We thank I. Dawid for helpful criticisms of this manuscript.

This study was supported by Public Health Service Award GM32036 from the National Institutes of Health.

LITERATURE CITED

- 1. Capon, D., P. Seeburg, J. McGrath, J. Hayflick, V. Edman, A. Levinson, and D. Goeddel. 1983. Activation of Ki-*ras2* gene in human colon and lung carcinoma by different point mutations. Nature (London) **304**:507-513.
- Chang, E. H., M. E. Furth, E. M. Scolnick, and D. R. Lowy. 1982. Tumorigenic transformation of mammalian cells induced by a normal human gene homologous to the oncogene of Harvey murine sarcoma virus. Nature (London) 297:479–483.
- Chattopadhyay, S. K., E. H. Chang, M. R. Lander, R. W. Ellis, E. M. Scolnick, and D. R. Lowy. 1982. Amplification and rearrangement of *onc* genes in mammalian species. Nature (London) 296:361-363.
- Corces, V., R. Holmgren, R. Morimoto, and M. Meselson. 1980. Four heat shock proteins in *Drosophila melanogaster* coded

within a 12 kilobase region in chromosome subdivision 67B. Proc. Natl. Acad. Sci. U.S.A. 77:5390-5393.

- Corces, V., A. Pellicer, R. Axel, and M. Meselson. 1981. Integration, transcription and control of a *Drosophila* heat shock gene in mouse cells. Proc. Natl. Acad. Sci. U.S.A. 78:7038–7042.
- DeFeo, D., M. A. Gonda, H. A. Young, E. A. Chang, D. R. Lowy, E. M. Scolnick, and R. W. Ellis. 1981. Analysis of two divergent rat genomic clones homologous to the transforming gene of Harvey murine sarcoma virus. Proc. Natl. Acad. Sci. U.S.A. 78:3328-3332.
- 7. Defeo-Jones, D., E. Scolnick, R. Koller, and R. Dhar. 1983. ras-Related gene sequences identified and isolated from Saccharomyces cerevisiae. Nature (London) 306:707-709.
- Ellis, R. W., D. DeFeo, T. Y. Shih, M. A. Gonda, H. A. Young, N. Tsuchida, D. R. Lowy, and E. M. Scolnick. 1981. The p21 src genes of Harvey and Kirsten sarcoma viruses originate from divergent members of a family of normal vertebrate genes. Nature (London) 292:506-511.
- Fyrberg, E. A., J. W. Mahaffey, B. J. Bond, and N. Davidson. 1983. Transcripts of the six *Drosophila* actin genes accumulate in a stage and tissue specific manner. Cell 33:115–123.
- Kataoka, T., S. Powers, C. McGill, O. Fasano, J. Strathern, J. Broach, and M. Wigler. 1984. Genetic analysis of yeast *RAS1* and *RAS2* genes. Cell 37:437–445.
- 11. Maxam, A. M., and W. Gilbert. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499–560.
- Neuman-Silberberg, F. S., E. Schejter, F. M. Hoffman, and B. Shilo. 1984. The *Drosophila ras* oncogenes: structure and nucleotide sequence. Cell 37:1027-1033.
- 13. Powers, S., T. Kataska, O. Fasano, M. Goldfarb, J. Strathern, J. Broach, and M. Wigler. 1984. Genes in S. cerevisiae encoding

proteins with domains homologous to the mammalian ras proteins. Cell 36:607-612.

- Reddy, E., R. Reynolds, E. Santos, and M. Barbacid. 1982. A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature (London) 300:149–152.
- Shilo, B., and R. Weinberg. 1981. DNA sequences homologous to vertebrate oncogenes are conserved in *Drosophila melanogaster*. Proc. Natl. Acad. Sci. U.S.A. 78:6789-6792.
- Shimizu, K., D. Birnbaum, M. Ruley, D. Fasano, Y. Suard, L. Edlun, E. Taparowsky, M. Goldfarb, and M. Wigler. 1983. The structure of the K-ras gene of the human lung carcinoma cell line Calu-1. Nature (London) 304:497-500.
- Tabin, C., S. Bradley, C. Bargmann, R. Weinberg, A. Papageorge, E. Scolnick, R. Dhar, D. Lowy, and E. Chang. 1982. Mechanism of activation of a human oncogene. Nature (London) 300:143-148.
- Taparowsky, E., K. Shimizu, M. Goldfarb, and M. Wigler. 1983. Structure and activation of the human N-ras gene. Cell 34:581-586.
- Taparowsky, E., Y. Suard, O. Fasano, K. Shimizu, M. Goldfarb, and M. Wigler. 1982. Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change. Nature (London) 300:762-765.
- Tatchell, K., D. T. Chaleff, D. DeFeo-Jones, and E. M. Scolnick. 1984. Requirement of either of a pair of *ras*-related genes of *Saccharomyces cerevisiae* for spore vability. Nature (London) 309:523-527.
- Yuasa, Y., S. Srivastava, C. Dunn, J. Rhim, E. Reddy, and S. Aaronson. 1983. Acquisition of transforming properties by alternative point mutations within *c-bas/has* human proto-oncogene. Nature (London) 303:775–779.