Supplementary Data

Figure S1. Polymorphic residues. (A) The HLA-B*35:08 molecule is represented in green cartoon, with HLA-B*35:01 in orange cartoon. The unique polymorphic residue at position 156 is represented in stick. (B) The graphic represents the surface of the HLA-B*35:08 molecule in white, with the LPEP peptide in cyan. The polymorphic residues are coloured in pink; A41, N80, R82, G83 and W167 in the HLA-B*35:08 molecule, correspond to T41, T80, L82, R83 and S167 in the HLA-B*44:02 molecule.

Figure S2. Analysis of SB27, CA5 and SB47 TCR binding to HLA-B35:08^{LPEP} **and HLA-B*35:01**^{LPEP}. The left and middle panels show the binding curves of immobilized SB27 (A), CA5 (B) and SB47 (C) TCRs with serial dilutions of HLA-B35:08^{LPEP} and HLA-B*35:01^{LPEP} in the fluid phase, respectively. The right panels show kinetic fits for the binding of SB27 (A), CA5 (B) and SB47 (C) TCRs with serial dilutions of HLA-B*35:08^{LPEP}.

Figure S3. Unbiased and refined density around the LPEP peptide. Unbiased (A and C) and refined (B and D) electron densities for the CA5 (A and B) and SB47 (C and D) ternary complexes. The unbiased electron density maps were generated via mFo-Fc maps at 3 sigma (green); refined density maps are contoured at 1 sigma with 2Fo-DFc maps (blue). The peptide is represented in black stick format.

Figure S4. Structural comparison of the SB47 TCR-pMHC-I complex. The N-terminally focused docking topology of the SB47 TCR (A) was structurally similar to the MHC-II-restricted autoimmune 3A6 TCR (B), the OB.1A12 TCR (C), and the E8 TCR (D). All MHC antigen binding clefts are coloured in white cartoon, with peptides shown as black sticks. CDR1 α , purple; CDR2 α , green; CDR3 α , red; CDR1 β yellow; CDR2 β , sand; CDR3 β , orange.

Table S1. Thermal stability assays of HLA B*35:08 mutants bound to the LPEP peptide.Table S2. Surface plasmon resonance experiments for HLA-B*35:08TCRs.

 Table S3. Contact table for the CA5 TCR with the HLA-B*35:08
 LPEP

 LNEP
 Complex.

Table S4. Contact table for the SB47 TCR with the HLA-B*35:08^{LPEP} complex.

Table S1. Thermal stability assays of HLA B*35:08 mutants bound to the LPEP peptide.

HLA B*35:08 mutant-LPEP	Tm (°C)
B*35:08 wild-type-LPEP	60.3 ± 1.0
B*35:08-E55A-LPEP	57.3 ± 1.0
B*35:08-D61A-LPEP	59.0 ± 1.7
B*35:08-R62A-LPEP	59.8 ± 1.0
B*35:08-I66A-LPEP	48.5 ± 0.4
B*35:08-L163A-LPEP	57.0 ± 0.6
B*35:08-E166A-LPEP	57.6 ± 1.6
B*35:08-R170A-LPEP	57.1 ± 1.4

Tm, or thermal melt, is the temperature required to reach 50% unfolded protein.

Table S2. Surface plasmon resonance experiments for HLA-B*35:08^{LPEP} mutants and the SB27 and SB47 TCRs.

HLA-B*35:08 mutant-LPEP	SB27 TCR Kd _{eq} (µM)	SB47 TCR Kd _{eq} (µM)
B*35:08 wild-type-LPEP	10.4 ± 1.6	22.3 ± 1.6
B*35:08-E55A-LPEP	12.6 ± 0.6	NB
B*35:08-D61A-LPEP	11.7 ± 0.1	NB
B*35:08-R62A-LPEP	17.5 ± 7.3	NB
B*35:08-I66A-LPEP	60.8 ± 10.0	160.6 ± 24.7
B*35:08-R151A-LPEP	87.1 ± 6.2	28.9 ± 2.4
B*35:08-Q155A-LPEP	48.1 ± 5.6	25.7 ± 0.7
B*35:08-L163A-LPEP	16.1 ± 3.4	>200
B*35:08-E166A-LPEP	18.5 ± 0.5	162 ± 5.7
B*35:08-R170A-LPEP	5.4 ± 0.4	NB

Equilibrium dissociation constants (Kd_{eq}) were determined from duplicate measurements for SB27 and SB47 TCR binding to HLA-B*35:08 wild-type and mutants bound to the LPEP peptide. The Kd_{eq} values represent the mean \pm standard error of the mean (sem).

TCR gene segment	CA5 TCR	HLA-B*35:08	Type of bond
CDR1a	Thr ³⁶	Ala^{158}, Gly^{162}	VDW
CDR1a	Thr ³⁶ O-γ1	Ala ¹⁵⁸ O	H-bond
CDR2a	Asn ⁵⁷	Glu ¹⁵⁴	VDW
CDR2a	Asn ⁵⁷ N-δ2	Glu ¹⁵⁴ O-ε1	H-bond
CDR2a	Phe ⁵⁹	Glu ¹⁵⁴ , Arg ¹⁵⁷ , Ala ¹⁵⁸ , Glu ¹⁶¹	VDW
CDR3a-N	Phe ¹¹⁰	Gln^{155} , Ala^{158} ,	VDW
CDR3a-N	Phe ¹¹⁰ O	$Gln^{155}N-\epsilon 2$	H-bond
CDR3a-J	Tyr ¹¹¹	Gln^{155} , Ala^{158} , Tyr^{159} , Leu^{163}	VDW
CDR3β-N	Glu ¹⁰⁹	Ala^{150}, Arg^{151}	VDW
CDR3β-J	Thr ¹¹⁰	Arg ¹⁵¹	VDW
TCR gene segment	CA5 TCR	LPEP peptide	Type of bond
CDR1a	Tyr ³⁸	Gln'	VDW
CDR1a	Tyr ³⁸ OH	Gln [′] Nε1	H-bond
CDR3a-V	Ser	Gln ⁷	VDW
CDR3a-V	Ser ¹⁰⁸ O-γ	$Gln^{7}N-\epsilon 2$	H-bond
CDR3a-N	Gly ¹⁰⁹	Gln ⁷	VDW
CDR3a-N	Phe_{110}^{110}	Pro ⁶ , Gln ⁷	VDW
CDR3a-J	Tyr ¹¹¹	Pro^4 , Leu ⁵ , Gln^7	VDW
CDR3a-J	Asn ¹¹²	Leu ⁵ , Pro ⁶ , Gln ⁷	VDW
CDR3a-J	Asn ¹¹² N	Leu ⁵ O	H-bond
CDR3a-J	Asp ¹¹⁴	Gln ⁷	VDW
CDR1β	Met ²⁷	Gln ⁹	VDW
CDR1β	Asn ²⁸	Gln ⁹	VDW
CDR1β	$Asn^{28}N-\delta 2$	Gln ⁹ N-ε2	H-bond
CDR1β	His ²⁹	Gln^7 , Gly^8 , Gln^9	VDW
CDR1β	Asn ³⁷	$Pro^{6}, Gln^{7}, Gly^{8}$	VDW
CDR1β	Asn ³⁷ N	Gln^7O, Gly^8O	H-bond
CDR1β	$Asn^{37}N-\delta2$	Pro ⁶ O, Gly ⁸ O	H-bond
CDR1β	Ser ³⁸	Gln ⁷	VDW
CDR1β	Ser ³⁸ N	Gly'O	H-bond
FWβ	Tyr ⁴⁰	Gln′	VDW
FWβ	Tyr ⁴⁰ OH	$G \ln^7 N \epsilon^2$	H-bond
CDR3β-N	Pro ¹⁰⁷	Gln^7 , Gly^8	VDW

Table S3. Contact table for the CA5 TCR with the HLA-B*35:08^{LPEP} complex.

CDR: complementarity-determining region; FW: framework; V: variable; J: junction; N: non-germline; VDW: van der Waals; H-bond: hydrogen bond.

TCR gene segment	SB47 TCR	HLA-B*35:08	Type of bond
CDR1a	Asp ³⁷	Trp^{167}, Arg^{170}	VDW
CDR1a	Asp ³⁷ O-δ1,δ2	Arg ¹⁷⁰ NH1, NH2	Salt bridge
CDR2a	Leu ⁵⁷	Leu ¹⁶³	VDW
CDR2a	Ser ⁵⁸	Gly^{162}, Glu^{166}	VDW
CDR2a	Asn ⁵⁹	Glu ¹⁶⁶	VDW
CDR2a	Asn ⁵⁹ N	Glu ¹⁶⁶ O-ε1	H-bond
FWα	Thr ⁸²	Glu ¹⁶⁶	VDW
CDR3a-N	Gly ¹⁰⁹	Glu ⁵⁵ , Gly ⁵⁶ , Arg ¹⁷⁰	VDW
CDR3a-N	Gly ¹⁰⁹ O	Gly ⁵⁶ N	H-bond
CDR3a-J	Ser ¹¹⁰	Gly ⁵⁶ , Pro ⁵⁷ , Glu ⁵⁸ , Tyr ⁵⁹ , Trp ¹⁶⁷ , Arg ¹⁷⁰	VDW
CDR3a-J	Ser ¹¹⁰ O	Glu ⁵⁸ N	H-bond
CDR3a-J	Ser ¹¹⁰ O-γ	Glu ⁵⁵ O-ε1	H-bond
CDR3a-J	Asn ¹¹¹	Pro^{57}, Glu^{58}	VDW
CDR3a-J	Tyr ¹¹²	Pro^{57} , Glu^{58} , Asp^{61}	VDW
CDR3a-J	Tyr ¹¹² OH	$Asp^{61}O-\delta2$	H-bond
CDR2β	Tyr ⁵⁷	$\operatorname{Asp}^{61}_{1}, \operatorname{Gln}^{65}_{1}$	VDW
CDR2β	Glu ⁵⁸ O-ε1	Lys ⁶⁸ Nç	Salt bridge
FWβ	Arg ⁶⁶	Pro^{57} , Asp^{61}	VDW
FWβ	Arg ⁶⁶ N-ε	$Asp^{61}O-\delta 1, \delta 2$	H-bond
FWβ	Arg ⁶⁶ NH2	Pro ⁵⁷ O	H-bond
FWβ	Arg ⁶⁶ NH1, NH2	$Asp^{61}O-\delta 1, \delta 2$	Salt bridge
FWβ	Gln ⁶⁷	Pro ⁵⁷	VDW
CDR3β-N	Thr ¹⁰⁹	Gln^{65} , Asp^{61}	VDW
CDR3β-N	Gly ¹¹⁰	$\operatorname{Arg}^{62}_{62}$, Ile ⁶⁶	VDW
CDR3β-N	Gly ¹¹⁰ O	Arg ⁶² NH1	H-bond
CDR3β-J	Ser	Arg ⁶²	VDW
CDR3β-J	Ser ¹¹¹ O	Arg ⁶² NH1, NH2	H-bond
CDR3β-J	Tyr ¹¹³	Arg ⁶²	VDW
CDR3β-J	Tyr ¹¹³ OH	Arg ⁶² NH1	H-bond
TCR gene segment	SB47 TCR	LPEP peptide	Type of bond
CDR3β-N	Arg ¹⁰⁸	Leu ³ , Pro ⁹ , Gln ⁷	VDW
CDR3β-N	Arg^{100} NH2	Pro [°] O, Gln′O, Gly [°] O	H-bond
CDR3β-N	Thr ¹⁰⁹	Leu	VDW
CDR3β-N	Gly^{110}	Pro ⁻ , Leu ⁻	VDW
CDR3β-N	Gly ¹¹⁰ O	Leu'N	H-bond
CDR3β-J	Ser	Pro ⁺ , Leu ² , Pro ^o , Gln ⁷	VDW
CDR3β-J	Ser ¹¹¹ O- γ	Leu ^o O, Pro ^o O	H-bond
CDR3β-J	Thr^{112}	Leu ³ , Gln ⁷	VDW
CDR3β-J	Tyr ¹¹⁵	Leu	VDW
CDR3β-J	Glu ¹¹⁴	Gln'	VDW

Table S4. Contact table for the SB47 TCR with the HLA-B*35:08^{LPEP} complex.

CDR: complementarity-determining region; FW: framework; V: variable; J: junction; N: non-germline; VDW: van der Waals; H-bond: hydrogen bond.

Supplementary Figure 1.

B

Supplementary Figure 2.

Supplementary Figure 3.

Supplementary Figure 4.

D