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T o  s a v e  s p a c e  o f  t h e  e q u a t i o n s ,  w e  i n t r o d u c e  t h e  f o l l o w i n g  n o t a t i o n s :

1, , , , n,  a d  , ,r r aL L P A A S L L representing the concentration of lipid, lipid peroxyl radical, lipid 

peroxide, vitamin E, vitamin E radical, hydroxyl radical, lipid radical, and lipid alkoxyl radical.

Non-dimensionalization

The free radicals with unpaired electrons are transient products during the chemical reactions 

shown in Table 1, and the concentrations of 1,  ,  ,  ,  and r a rL L L S A are extremely small. The 

typical scale of 1L is 610 M (42). The tropospheric hydroxyl radical concentration is in the 

order of 1510 M. An adult of 70kg body weight inhales oxygen at a rate of 14.7 mol/day. 

Assuming that 1% converts to free radicals, then the total production rate of ROS, sk , can be 

calculated by 14.7/24/70 × 0.01 mol/(L· h) = 8.75 × 510 M/h (6). Since the half life of the 

hydroxyl radical is approximately 2.4 × 1010 s (36) (Table 5), we can also estimate the 

concentration S to be in the range of 5 108.75 10 2.4 10 / (3600 l  2)n     to 1710 M. Based on 

the above we expect S to be in the magnitude of 1510 to 1710 M. We further assume, based on 

(36), that ,  r aL L are of the order 1010 M and that rA is of the order 610 M.
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In view of the above estimates, we non-dimensionalize the system by setting the typical 

length scale 0l to be 1cm, time scale to be 1 hour, and scaling the parameters and chemical 

concentrations as follows:

6 10 10 6 15
10 0 0 0 01 0 , 1 0 , 1 0 , 1 0 , 1 0 .r a rL M L M L M A M S M        

The non-dimensionalized parameters are defined by:
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Dropping the primes, for simplicity, the non-dimensionalized system of Eqs. (1-8) takes 

the following form:
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The simplified model

From the non-dimensionalized equations, we see that in the equations for 1, , ,  d , anr r aL A S L L , 

the chemical reactions are very fast (on a time scale of fraction of seconds), and the linear and 

quadratic decay terms have very large coefficients. Therefore we may assume the quasi-steady 

state of 1, , ,  d , anr r aL A S L L . We then obtain the following simplified model,

together with the boundary conditions on the computational domain,

0 0, 0 , t h e  b o t t o m  a n d  s i d e  f a c e s ,

0  on the top face,

 on L L P A A
L P A
z z z

  

  
  
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and the initial conditions

0 0 1

0

, 0, / outside the initial wound 
0, / 2 inside the initial wound

a aL L P A k
L A P L

  

  

Eqs. (10)-(12) are solved by using semi-implicit scheme. In 3-D the scheme is 
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where 6 is the standard 6 points central discretization of the Laplace Operator. In this 

discretization, the variables stay non-negative. Solving next Eqs. (15)-(17), we obtain
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Notice that Eqs. (13), (14), and (16) are quadratic equations for 1, ,  and r rA L L respectively.

There are no simple closed form solutions. We compute the stationary solution by iterating 

1, ,  and r rA L L in terms of other variables, using quadratic formulas until the tolerance of 

solutions between two successive iterations is below 1210 . For example, the quadratic equation 

for rA is

2
2 1 0 0r rc A c A c   ,
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to ensure that the stationary solution is positive.
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We solved the full model and the simplified model using central difference for the spatial 

discretization of diffusion and second-order backward differentiation formulas for the resulting 

ODE system. We found that the numerical results for the two models are virtually

indistinguishable under the parameters of our model in a one-dimensional geometry with no-flux 

boundary conditions and under various biologically reasonable initial conditions (not shown 

here). Thus the quasi-steady state simplification is justified numerically.
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Sensitivity analysis
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Figure S1. PRCC sensitivity analysis for the burn propagation at T = 12 in two-dimensional 

simulations on 19 parameters. PRCC values and p-values for these 19 parameters are listed on 
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the top of each subfigure. We found that the following parameters LOOHD , a , 4 are highly 

positively correlated while the parameters 1ak , 9 are highly negatively correlated.


