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Section S1. Definition of Relative Specificity Similarity (RSS) method 1 
In 2006, we designed a metric for evaluating the relative specificity semantic similarity between 2 
two GO terms, and named it as RSS. We scored the functional similarity of two proteins by 3 
considering the maximum RSS values of all term pairs [1]. For a given GO, let termi and termj be 4 
two terms, and Paths(termi) and Paths(termj) be the paths in the graphs induced from termi and 5 
termj, respectively, to the root term of the GO. We defined dist(termi, termj) as the number of 6 
edges along the shortest path between termi and termj, such that the value equals zero if the two 7 
terms are the same. The RSS of the two GO terms, termi and termj consists of three different 8 
components (Figure 1A), denoted α, β and γ. Component α is defined in Formula 1 and is 9 
equivalent to the definition of S in Wu’s work [2]. It measures how specific the most recent 10 
common ancestor (MRCA) of the two terms is according to the structure of the GO. 11 
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Obviously, the larger component α is, the more specific the MRCA. 13 
Component β measures how general termi and termj are in the GO and is defined in Formula 14 

2. The generality of a term is defined as the minimum distance between the term and the leaf terms 15 
descending from it. Leaf terms in a GO are those terms without any descendant. Obviously, the 16 
larger the distance between a term and its leaves, the more general is the term.  17 
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where U and V indicate all leaf nodes descending from termi and termj, respectively. 19 
Component γ measures the local distance between two terms and the MRCA and is defined as 20 

) ,(+) ,( ji termMRCAdisttermMRCAdist=γ .                 (3) 21 

If γ is smaller, it implies termi and termj share more similarity locally relative to the MRCA. 22 
Then, the RSS between two terms of a given GO, termi and termj can be quantified by 23 

combining α, β and γ together in Formula 4, 24 
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where maxDepthGO is the maximum distance from the root term of the GO to the leaf terms. From 26 
the definition, the values of RSS are between 0 and 1. Clearly, RSS = 0 (α = 0) indicates that the 27 
MRCA of termi and termj is the root of the GO, which means that the two terms share no 28 
commonality in describing protein properties; on the other hand, RSS = 1 (γ = 0 and β = 0) 29 
indicates that termi and termj are the same leaf term, which means that the two terms are most 30 
specific in describing protein attributes. RSS calculates semantic similarity not only takes the 31 
specificity of a common ancestor (α) into account, but also considers the position in the global GO 32 
DAG where any two terms are (β), as well as the local similarity between the term pair and their 33 
MRCA. 34 
 35 
Section S2. Definition of the semantic similarity methods used in the study 36 
Six semantic similarity methods were compared with RSS and HRSS in the evaluation analyses. 37 
RSS, HRSS, Resnik [3], Jiang [4], Lin [5] and TCSS [6] are node-based methods that use pairwise 38 
approaches, while simUI [7] and simGIC [8] are groupwise measures. RSS and HRSS methods 39 
were implemented using C programming language. Resnik, Jiang, Lin, simUI and simGIC were 40 



 3

also implemented in our study as described in their respective publications. TCSS was computed 1 
using the program provided by the publication [6]. Both maximum (MAX) and best-match 2 
average (BMA) strategies were used to compare the functional similarity of pairwise term pairs 3 
annotated on two proteins. The software of TCSS only provides the results of MAX strategy. 4 
simUI and simGIC consider the sets of GO terms for two proteins and uses the Jaccard index to 5 
calculate the similarity between them, thus MAX and BMA strategies are not relevant for them. 6 

Most of node-based methods are based on information content (IC) that estimates the 7 
property of a term c, and measures how specific and informative the term is. IC is commonly 8 
defined as the negative log likelihood of the term, 9 

( ) log ( )IC c p c= −          (5) 10 

where p(c) is the probability of occurrence of the term c in a specific corpus (such as the GO 11 
annotations of yeast genome or UniProt Knowledgebase), and is normally measured by the 12 
frequency of annotations on c and all the descendents in the sub-DAG rooted from c. The more 13 
often the term is used for annotation, the lower its semantic value. 14 

Resnik [3] defined a semantic similarity between two terms c1 and c2 as simply the IC of their 15 
most informative common ancestor (MICA), 16 

Re 1 2( , ) ( )sniksim c c IC MICA= .        (6) 17 

Jiang and Conrath [4] proposed a hybrid semantic similarity measure that inherits from the 18 
edge-based method and weights each edge by several factors, such as difference in IC, local 19 
density, node depth, and link type. The edge weight (wt) for a child node c and its parent node p is 20 
in Formula 7, 21 
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where d(p) denotes the depth of the node p (usually calculated as the longest path length from the 23 
root of the DAG to p), E(p) the number of edges in the child links (i.e. local density), E the 24 
average density in the whole DAG, and T(c,p) the link relation/type factor. Two weighting factors, 25 
α (α ≥ 0) and β (0 ≤ β ≥ 1) control the degree of how much the node depth and local 26 
density contribute to the edge weighting computation. Note that these contributions become less 27 
significant when α approaches 0 and β approaches 1. 28 

Then the overall distance between a node c and one of its ancestor (ance) is defined as the 29 
summation of edge weights along the shortest path linking them (path(c,ance)), 30 
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Now the semantic similarity between any two nodes (c1 and c2) relative to their MICA is defined 32 
as, 33 

1 2 1 2( , ) ( , ) ( , )d c c dist c MICA dist c MICA= + .                   (9) 34 

In the special case, where only IC is considered while factors related to node depth, local 35 
density and link type are ignored, i.e., α = 0, β = 1 and T(c,a) = 1, the distance between the two 36 
nodes can be simplified as, 37 

1 2 1 2( , ) ( ) ( ) 2 ( )Jiangd c c IC c IC c IC MICA= + − .      (10) 38 
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The simplified semantic distance could be converted to a similarity using the formula in [9] 1 

1 2 1 2( , ) 1 min(1, ( , ))Jiang Jiangsim c c d c c= − .      (11) 2 

Jiang and Conrath showed that their measure is not very sensitive to changes in the values of α 3 
and β. Hence the node depth and local density are not the major determinants of the overall edge 4 
weight [4]. 5 

Lin [5] considered the distance of the terms from their common ancestor in a different way, 6 
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Resnik, Jiang and Lin are the most commonly used IC-based semantic similarity measures. 8 
But they do not consider the unequal depth of biological knowledge representation in different 9 
braches of the GO graph. To overcome this, Jain and Bader [6] designed an improved IC-based 10 
algorithm, Topological Clustering Semantic Similarity (TCSS) by clustering similar GO terms into 11 
sub-graphs. A meta-graph was firstly created by partitioning the GO DAG into non-overlapping 12 
sub-graphs. Then, a semantic similarity between two GO terms si and tj was calculated based on 13 
the annotation information content (ICA) of their MICA. If si and tj belong to the same sub-graph, 14 
then their MICA will be in that sub-graph. The TCSS value of si and tj is defined as 15 

max( , ) ( )i jTCSS s t ICS MICA= .        (13) 16 

ICS (sub-graph information content) is a normalized value like  17 
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where the term s
it  belongs to the ith sub-graph s

iG . If si and tj belong to the different 19 

sub-graphs, then their MICA will be belong to the meta-graph, 20 

max( , ) ( )i jTCSS s t ICM MICA= .           (15) 21 

ICM (meta-graph information content) of a term m
it in meta-graph mG  is calculated within the 22 

meta-graph, 23 
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Let P and Q be two gene products of interest, and TP and TQ the sets of all the GO terms 25 
assigned to protein P and Q, respectively. Two pairwise approaches, namely MAX and BMA were 26 
implemented to quantify the relationship strength between P and Q. The MAX approach calculates 27 
the maximum semantic similarity score among all pairs of GO terms between TP and TQ, 28 
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The BMA approach computes the average of all maximum similarities for each term in TP and 30 
TQ, 31 
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Different from the aforementioned pairwise approaches, simUI [7] and simGIC [8] calculate 3 
the semantic similarity between two gene products based on measuring the two sets of annotated 4 
terms. Given two gene products P and Q, Terms(P) and Terms(Q) are extended annotations sets of 5 
P and Q, respectively. Terms(P) includes both direct GO annotations of protein P and all their 6 
ancestral terms up to the root term of the GO. Using the Jaccard index, simUI defines the 7 
similarity between the two proteins as the number of terms in the intersection of Terms(P) and 8 
Terms(Q) divided by the number of terms in the union, 9 
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simGIC proposed a weighted Jaccard index where each GO term is weighted by its IC. The 11 
simGIC value between P and Q is measured as the sum of the IC of each term in the intersection 12 
of Terms(P) and Terms(Q) divided by that in their union, 13 
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Section S3. Poor correlations of semantic similarities with gene co-expression 16 
We tested the performance of GO-based semantic similarity measures on the correlation with gene 17 
co-expression. First, two expression compendiums (tissue-specific pattern of mRNA expression in 18 
human and yeast cell cycle) were prepared as followers. (1) Human microarray data presented in 19 
Su et al. [10] was normalized and parsed by Nehrt et al. [11]. We were able to obtain expression 20 
data for 14,987 human genes in 25 tissues. Like Jain et al. [6], tests datasets for the three 21 
ontologies (including IEA annotations) were built independently by randomly selecting 3400 yeast 22 
protein pairs in the combined gene expression dataset, including an equal number of known 23 
protein-protein interactions (from human positive PPI dataset) and random protein pairs. (2) Four 24 
yeast cell cycle datasets presented in Spellman et al. [12] were retrieved from the Gene Expression 25 
Omnibus in NCBI with accessions GSE22 (Alpha-factor block-release), GSE23 (cdc15 26 
block-release), GSE24 (Elutriation time course) and GSE25 (Cyclin overexpression). Expression 27 
data was normalized within a single sample in each experiment dataset using Z-score method 28 
based on the original log2 fold change values, forcing expression values within a sample to have a 29 
mean of 0 and a standard deviation of 1. Then, an expression compendium with 6035 yeast genes 30 
in 60 samples was obtained by combining the four normalized experiment datasets. Test datasets 31 
for the three ontologies (including IEA) were built independently by randomly choosing 6000 32 
yeast protein pairs in the expression dataset, including an equal number of known protein-protein 33 
interactions and random protein pairs. 34 

Next, Pearson’s correlation coefficients were computed to quantify the relationship between 35 
semantic similarity and gene co-expression on the BP and MF ontologies. As shown in Figure S8, 36 
the correlation coefficients are fairly low, only with the maximum value of 0.2, indicating poor 37 
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linear correlations between semantic similarity and expression similarity. We also computed the 1 
Spearman’s rank correlation rho and obtained similar correlations (data not shown). 2 
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