eAppendix to Lipsitch et al. Estimating rates of carriage acquisition and clearance and competitive ability for pneumococcal serotypes in Kenya with a Markov transition model.

Observation	n (total = 2840 persons)	
Uncolonized at baseline	972 (34% of all persons)	
Colonized at baseline, <3 swabs (could	390 (14% all persons)	
not evaluate for time to event)		
Colonized at baseline, 3 or more swabs	1478 (52% of all persons)	
(could be evaluated for time to event)		
Colonized at baseline, no transition	421 (28% of persons with 3 or more swabs)	
observed before end of follow up		
Clearance observed	444 (30% of persons with 3 or more swabs)	
	Of these: 292 (66%) with two consecutive	
	negative swabs at the end of carriage	
Change of serotype observed	613 (42% of persons with 3 or more swabs)	
	Of these: 322 (53%) with two consecutive	
	identical swabs showing same new serotype	

eTable 1: Observations used in the analysis

Serotype Transition	Expectation	Observation minus
		expectation
15B -> 15C	1.765329296	16.2346707
15C -> 15B	1.635124905	10.36487509
19F -> 35B	7.249810749	9.750189251
35B -> 35A	0.698713096	9.301286904
6B -> 6A	10.78046934	9.219530659
23F -> 6A	8.965934898	9.034065102
6A -> 6B	9.286146858	7.713853142
23A -> 23B	0.882664648	7.117335352
7C -> 20	0.508705526	6.491294474
23F -> 23A	1.398940197	5.601059803
35A -> 35B	0.554125662	5.445874338
6B -> 14	3.822861469	5.177138531
7C -> 19F	3.342922029	4.657077971
23B -> 23A	0.749432248	4.250567752
19A -> 19B	0.849356548	4.150643452
35B -> 9V	1.881150643	4.118849357
20 -> 7C	0.472369417	3.527630583
10A -> 6A	4.482967449	3.517032551
19F -> 18C	2.020439061	2.979560939
19F -> 33D	2.020439061	2.979560939
23F -> 21	1.144587434	2.855412566
33B -> 33D	0.167297502	2.832702498
15A -> 10A	1.308099924	2.691900076
9V -> 15C	1.323996972	2.676003028
35F -> 35B	0.369417108	2.630582892
35B -> 24F	0.42997729	2.57002271
16F -> 6B	1.448902347	2.551097653
23B -> 23F	2.452687358	2.547312642
34 -> 11A	1.53671461	2.46328539
21 -> 14	0.567751703	2.432248297
18F -> 15A	0.046934141	1.953065859
33D -> 33B	0.063588191	1.936411809
10A -> 10F	0.127176382	1.872823618
18C -> 24F	0.139288418	1.860711582
20 -> 4	0.163512491	1.836487509
35B -> 35F	0.268735806	1.731264194
6B -> 5	0.535200606	1.464799394
28A -> 28F	0.002271007	0.997728993
19C -> 19A	0.070401211	0.929598789

eTable 2: Transitions between pairs of serotypes that occurred more often than expected by chance in 95% of cases.

Bold rows indicate within-serogroup pairs that may reflect high-frequency switching or errors in the last step of serotyping.

eFigure 1: Reduction in time to clearance from the youngest to the oldest terciles, versus time to clearance in the youngest tercile (log-log plot). The strong negative correlation suggests that with age, the more rapid immune clearance of carriage has a greater proportional effect on long-carried serotypes.

Time to Clearance (d) in Children <22 Months

Electronic availability of data:

We have included R objects that correspond to each of the model fits mentioned in this paper.

The full-data fit is called multi_res_fit_sigma_revision.RData , and the separate fits by age tercile have similar names with the terciles of age (1=youngest; 3=oldest).

When loaded into R, these appear as an object named "fit". The "fit" object has several slots:

fit\$res: Table of parameter estimates with asymptotic 95% confidence intervals for each.

fit\$init: Vector of fitted prevalence estimates for each of the serotypes and the uncolonized state.

fit\$sigma: Asymptotic covariance matrix which can be used to simulate from the asymptotic sampling distribution of the maximum likelihood log-parameter estimators (or the approximate posterior distribution of the parameters from a Bayesian perspective) to compute the sampling distribution of other quantities of interest (details below). Alternatively, this covariance matrix can be used for Delta method calculations.

fit\$loglik: Log-likelihood value at the parameter estimates.

fit\$optim.res: List returned by the optim routine used to fit the model. Contains additional convergence information and the numerical Hessian.

fit\$init: Initial value of each of the parameters when the optimizer was initialized.

Example:

To simulate from the asymptotic sampling distribution of the whole set of parameters:

> library(mvtnorm)

> rmvnorm(100, log(fit\$res[1,]), fit\$sigma))

Note that the covariance matrix corresponds to the sampling distribution of the log-parameters, so the normal distributions is centered at the log of the maximum likelihood estimates.