Supporting Information

Swietach et al. 10.1073/pnas.1222433110

Mathematical Supplement

Parameters. Parameters are presented in Table S1.

Model Equations. The model was solved over a 1D domain (120 µm), assuming uniform concentration in the radial dimension. A pH gradient was imposed by enforcing a fixed boundary condition for $[H^+] = 10^{-6.6}$ M on the proximal end of the myocytes and $[H^+] = 10^{-7.2}$ M on the opposite end of the myocytes. Initial intracellular free $[Ca^{2+}]$ and free $[Mg^{2+}]$ were set to 100 nM and 0.75 mM, respectively. Boundary conditions for all solutes, barring free H⁺ ions, were set to zero flux (i.e., reflection). The model consisted of a system of 23 parabolic differential equations, each representing 1 of the 23 participating solutes (U = [u₁,...u₂₃]; see Table S1), and it was solved using the pdepe function of MATLAB (MathWorks):

$$\partial \mathbf{U}/\partial \mathbf{t} = \mathbf{D} \times \partial^2 \mathbf{U}/\partial \mathbf{t}^2 + f(\mathbf{U}).$$

Vector D defines the diffusion coefficients of participating solutes. Function f defines the kinetics of binding between a buffer (Buf) and ligand (X = H⁺, Ca²⁺, or Mg²⁺), given as:

$$\partial [\operatorname{BufX}]/\partial t = q^{x} \times [X] \times [\operatorname{Buf}] - q^{x} \times K_{\operatorname{Buf}}^{x} \times [\operatorname{BufX}].$$

[H⁺] sensitivity of Ca²⁺ binding to fast Ca²⁺ buffers (pooling troponin C, calmodulin, and sarcoplasmic reticulum Ca²⁺ pump) was coded by scaling the Ca²⁺-binding rate constant by a factor of H⁺/(H⁺ + K^H_{fast}), where K^H_{fast} is the acid dissociation constant. The value of K^H_{fast} was set 10^{-6.5} M, which allows for a sufficient release of Ca²⁺ during uniform acid loading of the cell. This value simulates the apparent pH sensitivity of Ca²⁺ binding to troponin C (1).

Inadequacy of Fluo3 to Generate Spatial Ca²⁺/H⁺ Interactions. The exogenous fluorescent dye Fluo3 is, effectively, a mobile Ca²⁺/H⁺ buffer because of its affinity for Ca²⁺, and pH sensitivity of fluorescence (2). The dye's apparent acid dissociation constant pK_H was estimated to be ~5.7 based on the F/F₀ fall recorded with 1,2-bis(o-aminophenoxy)ethane-N,N,N',N-tetraacetic acid–pretreated cells exposed to acetate [intracellular pH (pH_i) drop from 7.2 to 6.6; Fig. 1 *B*, *v*)]. Under these Ca²⁺-clamp conditions, changes in fluorescence would be due to a pH artifact of the dye. Using the dye's diffusion coefficient in myoplasm [25 μ m²/s (3)],

the spatial Ca²⁺/H⁺ interaction was simulated assuming no histidyl dipeptide (HDP) or ATP. A pH_i gradient of 0.6 unit produced a longitudinal [Ca²⁺] gradient of <10 nM with 25 μ M Fluo3. Even after raising intracellular Fluo3 concentration by a factor of 1,000, the [Ca²⁺] gradient was no greater than 15 nM. Thus, Fluo3 alone cannot produce the experimentally observed spatial Ca²⁺/H⁺ interaction.

Inadequacy of Plasmalemmal Ca²⁺/H⁺ Pump to Generate Spatial Ca²⁺/H⁺ Interactions. The plasmalemmal Ca²⁺ ATPase (PMCA) has been proposed to function as a Ca²⁺/H⁺ exchanger (4). Hypothetically, it is possible for PMCA-mediated Ca²⁺/H⁺ exchange to produce a local rise in [Ca²⁺] in the acidic microdomain. If the [H⁺] microdomain were maintained, the [Ca²⁺] gradient established by regional PMCA activity would also be stable. To test whether PMCA could provide a mechanistic explanation for the experimentally observed spatial Ca²⁺/H⁺ interactions, the model was modified to introduce a boundary flux term for free Ca²⁺ ions. PMCA flux (J_p) was defined by a Hill equation (5, 6):

$$J_p = V_{max} \times [Ca^{2+}]^n / ([Ca^{2+}]^n + K_p^n).$$

The pump's maximal transport rate (V_{max}), Hill cooperativity (n), and Ca²⁺ affinity (K_p) at pH = 7.2 were set to 2.2 μ M/s, 1.6, and 0.5 µM, respectively (7). A "leak" Ca²⁺ influx was included in the Ca²⁺ boundary condition to balance J_p at diastolic $[Ca^{2+}]_i$, thus ensuring stable [Ca²⁺]_i of 100 nM under resting conditions at pH = 7.2. The effect of pH on plasmalemmal Ca^{2+} stoichiometry (PMCA) was simulated by varying Vmax or Kp (at constant Ca²⁺ leak). The simulation was run in the absence of HDPs and ATP (while keeping the effective Ca²⁺ diffusion coefficient constant). To produce an 80-nM [Ca²⁺] gradient over a 0.6-unit pH_i gradient, it was necessary to reduce V_{max} by >20-fold or K_p by greater than sevenfold, while maintaining a relatively high sarcolemmal inward leak of 0.16 µM/s. This exceptionally steep pH_i sensitivity and large Ca²⁺ leak were deemed incompatible with the kinetics of PMCA activity and experimental conditions (absence of extracellular Ca²⁺ would curtain inward leak). Thus, Ca^{2+}/H^{+} exchange on PMCA was deemed highly unlikely as an underlying mechanism for spatial Ca^{2+}/H^{+} interactions.

Crampin EJ, Smith NP, Langham AE, Clayton RH, Orchard CH (2006) Acidosis in models of cardiac ventricular myocytes. *Philos Transact A Math Phys Eng Sci* 364(1842):1171–1186.

Minta A, Kao JP, Tsien RY (1989) Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem 264(14):8171–8178.

Cordeiro JM, et al. (2001) Location of the initiation site of calcium transients and sparks in rabbit heart Purkinje cells. J Physiol 531(Pt 2):301–314.

Kuwayama H (1988) The membrane potential modulates the ATP-dependent Ca²⁺ pump of cardiac sarcolemma. *Biochim Biophys Acta* 940(2):295–299.

Choi HS, Eisner DA (1999) The role of sarcolemmal Ca²⁺-ATPase in the regulation of resting calcium concentration in rat ventricular myocytes. J Physiol 515(Pt 1): 109–118.

Bassani JW, Bassani RA, Bers DM (1994) Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms. J Physiol 476(2):279–293.

Shannon TR, Wang F, Puglisi J, Weber C, Bers DM (2004) A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. *Biophys J* 87(5): 3351–3371.

Fig. S1. Calibration of Ca^{2+} indicator dyes in cardiac ventricular myocytes. (*A*) Calibration of Fluo3. (*i*) Fluo3 acetoxymethyl (AM)-loaded myocyte, superfused in high-K⁺ buffer [140 mM KCl, 20 mM Hepes, 0.5 mM EGTA, 1 mM MgCl₂ (pH 7.2)] containing 10 µM thapsigargin [to block sarcoplasmic reticulum Ca^{2+} (SERCA)], 10 µM nigericin (to equilibrate intra- and extracellular pH), and 5 µM ionomycin (to equilibrate intra- and extracellular Ca^{2+}). Extracellular Ca^{2+} was varied by adding CaCl₂ to attain $[Ca^{2+}]_i$ as indicated (calculated using CaBuf software; G. Droogmans, Leuven, Belgium). (*ii*) Fluo3 AM-loaded myocyte superfused in 0Na-0Ca solution containing 10 mM 2,3-butanedione monoxime (to block contraction) and 10 µM thapsigargin. A patch pipette containing 100 mM K-gluconate, 30 mM KCl, 10 mM Hepes, and 1 mM CaCl₂ at pH 7.2 was attached to cell. Maximal fluorescence at saturating $[Ca^{2+}]$ was measured after perforating the membrane under the patch pipette with suction. (*iii*) Calibration curve. (*B*) Calibration of Rhod2 in saponin-permeabilized cells treated with 3 µM ionomycin. (*i*) Extramitochondrial $[Ca^{2+}]$ was varied by changing the total $[Ca^{2+}]$ added to 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-buffered solutions (calculated using CaBuf software). (*ii*) Calibration curve.

Fig. 52. Photolytic uncaging of H⁺ ions drives intrinsic buffers out of equilibrium. (*A*) Single, whole-cell UV flash applied to cell superfused with 0Na-0Ca solution containing 2 mM 2-nitrobenzaldehyde (NBA), the membrane-permeant caged H⁺ compound. (*i*) Fast time-base recordings show that pH (measured in cSNARF1 [5-(and-6)-carboxyseminaphtharhodafluor-1]-loaded myocytes) relaxes to its equilibrium level with a time constant of ~6 s. The dashed line shows equilibrium pH, predicted from buffering capacity measurements (1). (*ii*) Photolytic H⁺ release evokes a delayed rise in [Ca²⁺] (measured in Fluo3-loaded myocytes; *n* = 5). (*B*) Experiments in *A* repeated with 5 mM NBA (*n* = 5). (*C*) Three-buffer mathematical model of pH_i dynamics [featuring two intrinsic buffers (2) and the pH-sensitive dye cSNARF1] was used to simulate the actual (red) and cSNARF1-reported (black) pH_i time course during repeated (once every 9 s) uncaging from 1 mM NBA. The cSNARF1-reported pH_i time course was derived using the Henderson–Hasselbalch equation from the concentration of protonated and unprotonated dye. The concentration and pK (measure of apparent H⁺ affinity) of cSNARF1 were 400 µM and 7.5, respectively (3). The relatively slow kinetics of buffering allow for large pH_i excursions during rapid photolytic H⁺ uncaging.

1. Zaniboni M, et al. (2003) Intracellular proton mobility and buffering power in cardiac ventricular myocytes from rat, rabbit, and guinea pig. Am J Physiol Heart Circ Physiol 285(3): H1236–H1246.

2. Swietach P, Vaughan-Jones RD (2005) Relationship between intracellular pH and proton mobility in rat and guinea-pig ventricular myocytes. J Physiol 566(Pt 3):793-806.

3. Vaughan-Jones RD, Peercy BE, Keener JP, Spitzer KW (2002) Intrinsic H(+) ion mobility in the rabbit ventricular myocyte. J Physiol 541(Pt 1):139–158.

S A No

Fig. 53. $[Ca^{2+}]$ gradients measured under different experimental conditions in response to a pH_i microdomain. A 0.6-unit longitudinal pH_i gradient was established and maintained by regional exposure of a myocyte to 80 mM acetate using a dual-microperfusion apparatus (with the microstream boundary placed perpendicular to the cell along its center). $[Ca^{2+}]_i$ was imaged in Fluo3-loaded myocytes at 5 min of dual microperfusion. (*A*) In the absence of Na⁺ (replaced with NMDG) and Ca²⁺ (replaced with EGTA), regional exposure to acetate in 0Na and 0Ca microstreams produced a large $[Ca^{2+}]_i$ gradient (*n* = 25), which was abolished in cells preloaded with the Ca²⁺ buffer BAPTA (100 μ M, AM-loaded; *n* = 18). (*B*) Raising [Na⁺] in both microstreams to the physiological level of 140 mM did not affect the $[Ca^{2+}]_i$ gradient (*n* = 15). Cariporide (30 μ M) was added to both microstreams to inhibit NHE. To account for Ca²⁺ binding to acetate, total $[Ca^{2+}]_i$ in the acetate-containing microstream was 1.2 mM (giving 1 mM $[Ca^{2+}]_i$, confirmed with a Ca²⁺ microelectrode). (*D*) Experiment in normal extracellular Na⁺ and Ca²⁺ repeated on electrically paced myocytes (2-Hz field stimulation), showing no effect of excitation/contraction coupling on the pH_i-evoked Ca²⁺ gradient (*n* = 18). (*E*) $[Ca^{2+}]_i$ gradients were only modestly increased when Ca²⁺ extrusion on PMCA was blocked by raising extracellular Ca²⁺ to 8 mM, following a 3-min cell pretreatment in 0Na-0Ca solution (*n* = 7). (*F*) Experiments in the absence of extracellular Na⁺ and Ca²⁺ performed on myocytes treated with thapsigrin (Thapsi) to inhibit SERCA activity and empty the sarcoplasmic reticulum (SR; 10-min pretreatment with 10 μ M Thapsi; *n* = 20) or on myocytes exposed to the mitochondrial Na⁺/Ca²⁺ blocker CGP-37157 (20 μ M) and the Ca²⁺] gradients.

Fig. 54. Local exposure to 80 mM acetate (shaded in pink) produces a $[Ca^{2+}]_i$ gradient that does not dissipate, reaching $[Ca^{2+}]_i$ at the proximal (acetate-exposed) end of 1.67 normalized fluorescence (F/F₀) units. On subsequent whole-cell exposure to acetate, distal $[Ca^{2+}]_i$ rises to 1.56 F/F₀, whereas proximal $[Ca^{2+}]_i$ falls by 20% (NB: [H⁺] in the proximal region of interest falls by only 10%; Fig. 4 *B*, *i*). During local acetate exposure, proximal $[Ca^{2+}]_i$ is elevated by an active mechanism.

Fig. S5. (*A*) pH_i gradient in metabolically inhibited myocytes. A cardiac myocyte was treated with 10 μ M rotenone, 10 μ M antimycin A, and 5 mM deoxyglucose (in the absence of glucose) to inhibit metabolism. The pH_i gradient was subsequently established by exposing half of the myocyte to 0Na-0Ca solution containing 80 mM acetate and to acetate-free 0Na-0Ca in the remainder of the cell, using dual microperfusion. The pH_i gradient was no different from that produced in control cells without metabolic inhibitors (*n* = 15). (*B*) Loading myocytes with Mg²⁺ using the method of Almulla et al. (1). Myocytes were AMloaded with either Fluo3, to report cytoplasmic [Ca²⁺], or MagFluo4, to report cytoplasmic [Mg²⁺]. Mg²⁺ loading was triggered by raising extracellular Mg²⁺ (from 1 to 30 mM) and removing extracellular Na⁺ (replacing with *N*-methyl-D-glucamine) (*n* = 10 each).

1. Almulla HA, Bush PG, Steele MG, Ellis D, Flatman PW (2006) Loading rat heart myocytes with Mg²⁺ using low-[Na⁺] solutions. J Physiol 575(Pt 2):443–454.

Table S1.	Parameterization of	of constants for	diffusion-reaction model

Parameter	Definition	Value	Reference
D _H	Cytoplasmic free H ⁺ diffusion coefficient	6000 μm²/s	(1)
D _{Ca}	Cytoplasmic free Ca ²⁺ diffusion coefficient	300 µm²/s	(2-4)
D _{Mg}	Cytoplasmic free Mg ²⁺ diffusion coefficient	300 µm²/s	as D _{Ca}
q ^H	H ⁺ binding rate constant	100 μM⁻¹ s⁻¹	(1)
q ^{Ca} fast	Ca^{2+} binding rate constant to fast Ca^{2+} buffer, ATP, HDP, Fluo3.	30 μM⁻¹ s⁻¹	(5)
q ^{Ca} slow	Ca ²⁺ binding rate constant to slow Ca ²⁺ buffer	2.4 μM⁻¹ s⁻¹	(5)
q ^{Mg} _{fast}	Mg ²⁺ binding rate constant to ATP, HDP	30 μM⁻¹ s⁻¹	as q ^{Ca} fast
q ^{Mg} slow	Mg ²⁺ binding rate constant to slow Ca ²⁺ buffer	0.003 μM⁻¹ s⁻¹	(5)
C _{fix}	Fixed H ⁺ -buffer concentration	62.4 mM	*, (6, 7)
K ^H _{fix}	Fixed H ⁺ -buffer H ⁺ affinity	10 ^{-6.30} M	*, (6, 7)
D _{mob}	Nondipeptide mobile buffer diffusion coefficient	22 µm²/s	*, (6, 7)
C _{mob}	Nondipeptide mobile H ⁺ -buffer concentration	5.67 mM	*, (6, 7)
K ^H _{mob}	Nondipeptide mobile H ⁺ -buffer H ⁺ affinity	10 ^{-8.47} M	*, (6, 7)
D _{buf}	Pooled fast/slow Ca ²⁺ buffer diffusion coefficient	0 μm²/s	
C _{fast}	Fast Ca ²⁺ buffer concentration	120 μM	(5)
K ^{Ca} fast	Fast Ca ²⁺ buffer Ca ²⁺ affinity	10 ^{-6.23} M	(5)
C _{slow}	Slow Ca ²⁺ buffer concentration	140 μM	(5)
K ^{Ca} slow	Slow Ca ²⁺ buffer Ca ²⁺ affinity	10 ^{-7.87} M	(5)
K ^{Mg} slow	Slow Ca ²⁺ buffer Mg ²⁺ affinity	10 ^{-2.95} M	(5)
C _{carn}	Histidyl-dipeptide concentration	17 mM	*, (6, 7)
K ^H _{carn}	Histidyl-dipeptide H ⁺ affinity	10 ^{-6.8} M	(8)
K ^{Ca} carn	Histidyl-dipeptide Ca ²⁺ affinity	10 ^{-3.22} M	(8)
K ^{Mg} carn	Histidyl-dipeptide Mg ²⁺ affinity	10 ^{-3.1} M	(8)
D _{carn}	Histidyl-dipeptide diffusion coefficient	225 µm²/s	*, (6, 7)
C _{atp}	ATP concentration	7.5 mM	(9, 10)
K ^H atp	ATP H ⁺ affinity	10 ^{-6.49} M	(11)
K ^{Ca} atp	ATP Ca ²⁺ affinity	10 ^{-4.66} M	(9)
K ^{Mg} atp	ATP Mg ²⁺ affinity	10 ^{-4.36} M	(9)
D _{atp}	ATP diffusion coefficient	150 μm²/s	(2)
C _{fluo}	Fluo3 concentration	25 μM	(5)
К ^Н _{fluo}	Fluo3 H ⁺ affinity	10 ^{-5.7} M	Fig. 1B
K ^{Ca} fluo	Fluo3 Ca ²⁺ affinity	10 ^{-6.08} M	Fig. S1A
D _{fluo}	Fluo3 diffusion coefficient	25 μm²/s	(2)

Where applicable, parameters corrected to 37°C (2).

*Derived from three-component buffer best-fit to intrinsic H⁺-mobility and buffering capacity data.

1. Swietach P, Leem CH, Spitzer KW, Vaughan-Jones RD (2005) Experimental generation and computational modeling of intracellular pH gradients in cardiac myocytes. *Biophys J* 88(4): 3018–3037.

2. Cordeiro JM, et al. (2001) Location of the initiation site of calcium transients and sparks in rabbit heart Purkinje cells. J Physiol 531(Pt 2):301-314.

3. Kushmerick MJ, Podolsky RJ (1969) Ionic mobility in muscle cells. Science 166(3910):1297-1298.

Swietach P, Spitzer KW, Vaughan-Jones RD (2008) Ga²⁺-mobility in the sarcoplasmic reticulum of ventricular myocytes is low. Biophys J 95(3):1412–1427.

5. Shannon TR, Wang F, Puglisi J, Weber C, Bers DM (2004) A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. Biophys J 87(5):3351–3371.

6. Swietach P, Vaughan-Jones RD (2005) Relationship between intracellular pH and proton mobility in rat and guinea-pig ventricular myocytes. J Physiol 566(Pt 3):793-806.

7. Swietach P, Spitzer KW, Vaughan-Jones RD (2007) pH-Dependence of extrinsic and intrinsic H(+)-ion mobility in the rat ventricular myocyte, investigated using flash photolysis of a caged-H(+) compound. *Biophys J* 92(2):641–653.

8. Baran EJ (2000) Metal complexes of carnosine. Biochemistry (Mosc) 65(7):789-797.

LAS PNAS

9. Kargacin ME, Kargacin GJ (1997) Predicted changes in concentrations of free and bound ATP and ADP during intracellular Ca2+ signaling. Am J Physiol Cell Physiol 273:C1416-C1426.

10. Vaughan-Jones RD, Peercy BE, Keener JP, Spitzer KW (2002) Intrinsic H(+) ion mobility in the rabbit ventricular myocyte. J Physiol 541(Pt 1):139–158.

11. Kushmerick MJ (1997) Multiple equilibria of cations with metabolites in muscle bioenergetics. Am J Physiol 272(5 Pt 1):C1739-C1747.