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Mathematical Supplement
Parameters. Parameters are presented in Table S1.

Model Equations. The model was solved over a 1D domain (120
pm), assuming uniform concentration in the radial dimension. A
pH gradient was imgosed by enforcing a fixed boundary condi-
tion for [H*] = 10™¢ M on the proximal end of the myocytes
and [H*] = 107> M on the opposite end of the myocytes. Initial
intracellular free [Ca®*] and free [Mg**] were set to 100 nM and
0.75 mM, respectively. Boundary conditions for all solutes, bar-
ring free H' ions, were set to zero flux (i.e., reflection). The
model consisted of a system of 23 parabolic differential equations,
each representing 1 of the 23 participating solutes (U = [uy,. . .u3];
see Table S1), and it was solved using the pdepe function of
MATLAB (MathWorks):

0U/ot=D x d*U/ot* +f(U).

Vector D defines the diffusion coefficients of participating
solutes. Function f defines the kinetics of binding between
a buffer (Buf) and ligand (X = H*, Ca**, or Mg*"), given as:

d[BufX]/ot=q* x [X] x [Buf] — q* x Kj ¢ % [BufX].

[H*] sensitivity of Ca®* binding to fast Ca®* buffers (pooling
troponin C, calmodulin, and sarcoplasmic reticulum Ca** pump)
was coded by scaling the Ca**-binding rate constant by a factor
of HY/(H' + K"p), where K™, is the acid dissociation con-
stant. The value of K was set 107%° M, which allows for
a sufficient release of Ca** during uniform acid loading of the
cell. This value simulates the apparent pH sensitivity of Ca®*
binding to troponin C (1).

Inadequacy of Fluo3 to Generate Spatial Ca?*/H* Interactions. The
exogenous fluorescent dye Fluo3 is, effectively, a mobile Ca®*/H*
buffer because of its affinity for Ca®*, and pH sensitivity of
fluorescence (2). The dye’s apparent acid dissociation constant
pKy was estimated to be ~5.7 based on the F/F fall recorded
with 1,2-bis(o-aminophenoxy)ethane-N,N,N’,N-tetraacetic acid—
pretreated cells exposed to acetate [intracellular pH (pH;) drop
from 7.2 to 6.6; Fig. 1 B, v)]. Under these Ca**-clamp conditions,
changes in fluorescence would be due to a pH artifact of the dye.
Using the dye’s diffusion coefficient in myoplasm [25 um?/s (3)],
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the spatial Ca®*/H" interaction was simulated assuming no his-
tidyl dipeptide (HDP) or ATP. A pH; gradient of 0.6 unit pro-
duced a longitudinal [Ca**] gradient of <10 nM with 25 pM
Fluo3. Even after raising intracellular Fluo3 concentration by
a factor of 1,000, the [Ca**] gradient was no greater than 15 nM.
Thus, Fluo3 alone cannot produce the experimentally observed
spatial Ca**/H" interaction.

Inadequacy of Plasmalemmal Ca?*/H* Pump to Generate Spatial
Ca?*/H* Interactions. The plasmalemmal Ca** ATPase (PMCA)
has been proposed to function as a Ca**/H* exchanger (4).
Hypothetically, it is possible for PMCA-mediated Ca**/H" ex-
change to produce a local rise in [Ca®*] in the acidic micro-
domain. If the [H*] microdomain were maintained, the [Ca*']
gradient established by regional PMCA activity would also be
stable. To test whether PMCA could provide a mechanistic ex-
planation for the experimentally observed spatial Ca®*/H" in-
teractions, the model was modified to introduce a boundary flux
term for free Ca®* ions. PMCA flux (J,) was defined by a Hill
equation (5, 6):

Jp =V X [Ca>*]"/ ([Ca?*]" +K3).

The pumg’s maximal transport rate (V.y), Hill cooperativity
(n), and Ca“* affinity (K,) at pH = 7.2 were set to 2.2 pM/s, 1.6,
and 0.5 pM, respectively (7). A “leak” Ca®* influx was included
in the Ca** boundary condition to balance J,, at diastolic [Ca®*];,
thus ensuring stable [Ca**]; of 100 nM under resting conditions
at pH = 7.2. The effect of pH on plasmalemmal Ca** stoichi-
ometry SPMCA) was simulated by varying V.. or K, (at con-
stant Ca>* leak). The simulation was run in the absence of HDPs
and ATP (while keeping the effective Ca”* diffusion coefficient
constant). To produce an 80-nM [Ca®*] gradient over a 0.6-unit
pH; gradient, it was necessary to reduce V. by >20-fold or K,
by greater than sevenfold, while maintaining a relatively high
sarcolemmal inward leak of 0.16 pM/s. This exceptionally steep
pH; sensitivity and large Ca”* leak were deemed incompatible
with the kinetics of PMCA activity and experimental conditions
(absence of extracellular Ca®* would curtain inward leak). Thus,
Ca®*/H* exchange on PMCA was deemed highly unlikely as an
underlying mechanism for spatial Ca**/H* interactions.
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Fig. S1. Calibration of Ca* indicator dyes in cardiac ventricular myocytes. (A) Calibration of Fluo3. (i) Fluo3 acetoxymethyl (AM)-loaded myocyte, superfused
in high-K* buffer [140 mM KCl, 20 mM Hepes, 0.5 mM EGTA, 1 mM MgCl, (pH 7.2)] containing 10 uM thapsigargin [to block sarcoplasmic reticulum Ca*
(SERCA)], 10 uM nigericin (to equilibrate intra- and extracellular pH), and 5 pM ionomycin (to equilibrate intra- and extracellular Ca2*). Extracellular Ca®* was
varied by adding CaCl, to attain [Ca?*]; as indicated (calculated using CaBuf software; G. Droogmans, Leuven, Belgium). (/i) Fluo3 AM-loaded myocyte su-
perfused in ONa-0Ca solution containing 10 mM 2,3-butanedione monoxime (to block contraction) and 10 pM thapsigargin. A patch pipette containing 100 mM
K-gluconate, 30 mM KCl, 10 mM Hepes, and 1 mM CaCl, at pH 7.2 was attached to cell. Maximal fluorescence at saturating [Ca?*] was measured after per-
forating the membrane under the patch pipette with suction. (iii) Calibration curve. (B) Calibration of Rhod2 in saponin-permeabilized cells treated with 3 pM
ionomycin. (i) Extramitochondrial [Ca%*] was varied by changing the total [Ca%*] added to 1,2-bis(o-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid (BAPTA)-
buffered solutions (calculated using CaBuf software). (ii) Calibration curve.
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Fig. S2. Photolytic uncaging of H* ions drives intrinsic buffers out of equilibrium. (A) Single, whole-cell UV flash applied to cell superfused with ONa-0Ca
solution containing 2 mM 2-nitrobenzaldehyde (NBA), the membrane-permeant caged H* compound. (/) Fast time-base recordings show that pH (measured in
¢SNARF1 [5-(and-6)-carboxyseminaphtharhodafluor-1]-loaded myocytes) relaxes to its equilibrium level with a time constant of ~6 s. The dashed line shows
equilibrium pH, predicted from buffering capacity measurements (1). (i) Photolytic H* release evokes a delayed rise in [Ca®*] (measured in Fluo3-loaded
myocytes; n = 5). (B) Experiments in A repeated with 5 mM NBA (n = 5). (C) Three-buffer mathematical model of pH; dynamics [featuring two intrinsic buffers
(2) and the pH-sensitive dye ¢cSNARF1] was used to simulate the actual (red) and cSNARF1-reported (black) pH; time course during repeated (once every 9 s)
uncaging from 1 mM NBA. The ¢cSNARF1-reported pH; time course was derived using the Henderson-Hasselbalch equation from the concentration of pro-
tonated and unprotonated dye. The concentration and pK (measure of apparent H* affinity) of cSNARF1 were 400 uM and 7.5, respectively (3). The relatively
slow kinetics of buffering allow for large pH; excursions during rapid photolytic H* uncaging.
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Fig. $3. [Ca®*] gradients measured under different experimental conditions in response to a pH; microdomain. A 0.6-unit longitudinal pH; gradient was
established and maintained by regional exposure of a myocyte to 80 mM acetate using a dual-microperfusion apparatus (with the microstream boundary
placed perpendicular to the cell along its center). [Ca®*]; was imaged in Fluo3-loaded myocytes at 5 min of dual microperfusion. (A) In the absence of Na*
(replaced with NMDG) and Ca%t (replaced with EGTA), regional exposure to acetate in ONa and 0Ca microstreams produced a large [Ca?*]; gradient (n = 25),
which was abolished in cells preloaded with the Ca®* buffer BAPTA (100 pM, AM-loaded; n = 18). (B) Raising [Na*] in both microstreams to the physiological
level of 140 mM did not affect the [Ca®*]; gradient (n = 15). Cariporide (30 pM) was added to both microstreams to inhibit sarcolemmal Na*/H* exchange (NHE).
(C) Raising [Na'] and [Ca®*] in both microstreams to their physiological levels of 140 mM and 1 mM, respectively, did not affect the [Ca%*]; gradient (n = 9).
Cariporide (30 uM) was added to both microstreams to inhibit NHE. To account for Ca®* binding to acetate, total [Ca®*] in the acetate-containing microstream
was 1.2 mM (giving 1 mM [Ca%*];, confirmed with a Ca®* microelectrode). (D) Experiment in normal extracellular Na* and Ca%t repeated on electrically paced
myocytes (2-Hz field stimulation), showing no effect of excitation/contraction coupling on the pH;-evoked Ca%t gradient (n = 18). (E) [Ca?*); gradients were only
modestly increased when Ca** extrusion on PMCA was blocked by raising extracellular Ca®* to 8 mM, following a 3-min cell pretreatment in ONa-0Ca solution
(n = 7). (F) Experiments in the absence of extracellular Na* and Ca?" performed on myocytes treated with thapsigargin (Thapsi) to inhibit SERCA activity and
empty the sarcoplasmic reticulum (SR; 10-min pretreatment with 10 uM Thapsi; n = 20) or on myocytes exposed to the mitochondrial Na*/Ca®* blocker CGP-
37157 (20 uM) and the Ca**-uniporter blocker ruthenium-360 (Ru360; 5 uM) to block Ca®* fluxes in and out of mitochondria (n = 7). Neither treatment
abolished the [Ca®*]; gradients.
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Fig. S4. Local exposure to 80 mM acetate (shaded in pink) produces a [Ca**]; gradient that does not dissipate, reaching [Ca®*]; at the proximal (acetate-exposed)
end of 1.67 normalized fluorescence (F/Fo) units. On subsequent whole-cell exposure to acetate, distal [Ca?*]; rises to 1.56 F/Fo, whereas proximal [Ca**]; falls by 20%
(NB: [H'] in the proximal region of interest falls by only 10%; Fig. 4 B, i). During local acetate exposure, proximal [Ca?*]; is elevated by an active mechanism.
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Fig. S5. (A) pH; gradient in metabolically inhibited myocytes. A cardiac myocyte was treated with 10 pM rotenone, 10 uM antimycin A, and 5 mM deoxy-
glucose (in the absence of glucose) to inhibit metabolism. The pH; gradient was subsequently established by exposing half of the myocyte to ONa-0Ca solution
containing 80 mM acetate and to acetate-free ONa-0Ca in the remainder of the cell, using dual microperfusion. The pH; gradient was no different from that
produced in control cells without metabolic inhibitors (n = 15). (B) Loading myocytes with Mg?* using the method of Almulla et al. (1). Myocytes were AM-
loaded with either Fluo3, to report cytoplasmic [Ca®*], or MagFluo4, to report cytoplasmic [Mg?*]. Mg?* loading was triggered by raising extracellular Mg?*
(from 1 to 30 mM) and removing extracellular Na* (replacing with N-methyl-b-glucamine) (n = 10 each).
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Table S1. Parameterization of constants for diffusion-reaction model

Parameter Definition Value Reference
Dy Cytoplasmic free H* diffusion coefficient 6000 pm?/s (1)
Dca Cytoplasmic free Ca* diffusion coefficient 300 pm?%/s (2-4)
Dwmg Cytoplasmic free Mg?* diffusion coefficient 300 pm?/s as Dc,
g™ H* binding rate constant 100 pM™' s (1)
%%t Ca®* binding rate constant to fast Ca®* buffer, ATP, HDP, Fluo3. 30 yM™ s (5)
90w Ca®* binding rate constant to slow Ca* buffer 24 M1 s (5)
qV%ast Mg?* binding rate constant to ATP, HDP 30 M s as q%aa
9% 10w Mg?* binding rate constant to slow Ca* buffer 0.003 pM™* ™ (5)
Crix Fixed H*-buffer concentration 62.4 mM * (6, 7)
KM i Fixed H*-buffer H* affinity 10930 M *, (6, 7)
Drmob Nondipeptide mobile buffer diffusion coefficient 22 pm?ss *, (6, 7)
Cinob Nondipeptide mobile H*-buffer concentration 5.67 mM *, (6, 7)
K" mob Nondipeptide mobile H*-buffer H* affinity 10847 M *, (6, 7)
Dput Pooled fast/slow Ca?* buffer diffusion coefficient 0 pm?/s

Ctast Fast Ca®* buffer concentration 120 uM (5)
K ast Fast Ca®* buffer Ca®* affinity 10923 M (5)
Csiow Slow Ca®* buffer concentration 140 uM (5)
K 10w Slow Ca?* buffer Ca®* affinity 1078 M (5)
KM 10w Slow Ca* buffer Mg?* affinity 1029 M (5)
Cearn Histidyl-dipeptide concentration 17 mM *,(6, 7)
KMo Histidyl-dipeptide H* affinity 1058 M (8)
K<carn Histidyl-dipeptide Ca?* affinity 10322 M (®)
KMS rn Histidyl-dipeptide Mg?* affinity 103 M (8)
Dcarn Histidyl-dipeptide diffusion coefficient 225 um?/s *, (6, 7)
Catp ATP concentration 7.5 mM 9, 10)
Ko ATP H* affinity 10%4° M (11)
K% ATP Ca?* affinity 107466 M (9)
KM, ATP Mg?* affinity 10436 M 9)
Datp ATP diffusion coefficient 150 pm?/s )
Ctiuo Fluo3 concentration 25 uM (5)

K fiuo Fluo3 H* affinity 1057 M Fig. 1B
K00 Fluo3 Ca®* affinity 10508 m Fig. S1A
Dfiuo Fluo3 diffusion coefficient 25 um?/s )

Where applicable, parameters corrected to 37°C (2).
*Derived from three-component buffer best-fit to intrinsic H*-mobility and buffering capacity data.
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