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1 k-weakly Compatible System

A split system S is k-weakly compatible if any k + 2 splits Ai|Bi ∈ S with
i = 1, 2, · · · , k + 2 are k-weakly compatible in the sense that if |

⋂k+2
i=1 Ai| >

k − 1, then at least one of the k + 2 intersections Ai ∩
⋃

j 6=i,1≤j≤k+2Bj, i =
1, 2, · · · k+ 2 is empty. It is clear from the definition that weakly compatible
is the same as 1-weakly compatible.

Lemma 1. k−1-weakly compatible split systems are also k-weakly compatible.

Proof. Suppose S is a k − 1-weakly compatible split system. For any k +
2 splits Ai|Bi ∈ S with i = 1, 2, · · · , k + 2, if |

⋂k+2
i=1 Ai| > k − 1, then

|
⋂k+1

i=1 Ai| > k − 1 > k − 2 since |
⋂k+1

i=1 Ai| ≥ |
⋂k+2

i=1 Ai|. Since S is k − 1-
weakly compatible, at least one of the k+1 intersections Ai∩

⋃
j 6=i,1≤j≤k+1Bj,

i = 1, 2, · · · k + 1 is empty. Intersecting with Bk+2, one has that at least one
of the k+ 2 intersections Ai∩

⋃
j 6=i,1≤j≤k+2Bj, i = 1, 2, · · · k+ 2 is empty. By

definition, S is also k-weakly compatible.

As a proposition, any weakly compatible system is also 2-weakly compat-
ible. It is worth noting that the split system {xa|bc, xb|ac, xc|ab} is 2-weakly
compatible but not weakly compatible. So 2-weakly compatible is indeed a
proper generalization of weakly compatible.
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2 Proof of the equivalence between the re-

currence system Eqn. (1) ∼ (4) and Split

Decomposition

In Split-Decomposition paper (Bandelt and Dress 1992), the split weight
(isolation index) of any split A|B, denoted by α(A|B), is defined as

α(A|B) =
1

2
min

a,a′∈A;b,b′∈B
{max{w(a|b) + w(a′|b′), w(a′|b) + w(a|b′),

w(a|a′) + w(b|b′)} − w(a|a′)− w(b|b′)}.

To prove the equivalence of Equations (1) to (4) and Split Decomposition,
we next show that the function α and w are equivalent for any split A|B.

Proof. The objective is to show that α(A|B) = w(A|B) for any split A|B.
We prove it case by case on the cardinalities |A| = m and |B| = n.

(1) m = 1 and n ≥ 1, that is, the case a|A. By definition,

α(a|A)

=
1

2
min
b,b′∈A

{max{ab+ ab′, aa+ bb′} − aa− bb′}

=
1

2
min
b,b′∈A

{max{ab+ ab′ − bb′, 0}}

= max

{
0,

1

2
min
b,b′∈A

{ab+ ab′ − bb′}
}

= w(a|A)

By symmetry, The equality also holds for n = 1 and m ≥ 1.

(2) m = 2 and n = 2, that is, the case aa′|bb′. The following lemma is
presented in Bandelt and Dress (1992a).

Lemma 2 (Bandelt and Dress, 1992a). Let A0|B0 be a partial split on
X, then for all x ∈ X − (A0 ∪B0)

α(A0x|B0) + α(A0|B0x) ≤ α(A0|B0).
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Setting A0 = a, x = a′, B0 = bb′, one has

α(aa′|bb′) ≤ α(a|bb′)− α(a|a′bb′).

Incorporating with w(a|bb′) = α(a|bb′) and w(a|a′bb′) = α(a|a′bb′), one
has

α(aa′|bb′) ≤ w(a|bb′)− w(a|a′bb′)

Similarly,
α(aa′|bb′) ≤ w(a′|bb′)− w(a′|abb′),

α(aa′|bb′) ≤ w(aa′|b)− w(aa′b′|b),

α(aa′|bb′) ≤ w(aa′|b′)− w(aa′b|b′).

By definition, α(aa′|bb′) ≤ w(aa′|bb′).

We next prove α(aa′|bb′) ≥ w(aa|bb′). For convenience, we let β(aa′|bb′) =
1
2
(max{ab + a′b′, a′b + ab′, aa′ + bb′} − aa′ − bb′), and denote β(aa|bb)

and β(aa|bb′) by β(a|b) and β(a|bb′) respectively. Then, by definition

α(aa′|bb′) = min{β(a|b), β(a|b′), β(a′|b), β(a′|b′),
β(aa′|b), β(aa′|b′), β(a|bb′), β(a′|ab′), β(a|a′bb′)}.

If α(aa′|bb′) = β(a|b), then α(aa′|bb′) ≥ w(aa′|bb′) since β(a|b) ≥
α(a|bb′) ≥ α(a|bb′) − α(a|a′bb′) ≥ w(aa′|bb′). Similarly, α(aa′|bb′) ≥
w(aa′|bb′) if α(aa′|bb′) equals to β(a|b′), β(a′|b), β(a′|b′), β(a|bb′), β(a′|bb′),
β(a, a′|b) or β(aa′|b′).

Thus, without loss of generality, we assume

α(aa′|bb′) = β(aa′|bb′) =
1

2
(max{ab+ a′b′, a′b+ ab′, aa′ + bb′} − aa′ − bb′).

Noting that α(a|a′bb′) = 1
2

min{2aa′, 2ab, 2ab′, aa′+ ab− a′b, aa′+ ab′−
a′b′, ab+ ab′ − bb′}, we divide into 3 cases.

Case 1: α(a|a′bb′) = ab, then α(a|bb′) = ab, and thus w(aa′|bb′) ≤
α(a|bb′)−α(a|a′bb′) = 0 ≤ α(aa′|bb′). Similarly, we can prove w(aa′|bb′) ≤
α(aa′|bb′) if α(a|a′bb′) equals to 2ab′ or ab+ ab′ − bb′.
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Case 2: α(a|a′bb′) = 1
2

min{aa′ + ab− a′b, aa′ + ab′ − a′b′}, then

w(aa′|bb′)
≤ α(a|bb′)− α(a|a′bb′)

=
1

2
min{2ab, 2ab′, ab+ ab′ − bb′} − 1

2
min{aa′ + ab− a′b, aa′ + ab′ − a′b′}

≤ 1

2
(ab+ ab′ − bb′)− 1

2
min{aa′ + ab− a′b, aa′ + ab′ − a′b′}

=
1

2
(max{ab+ a′b′, a′b+ ab′} − aa′ − bb′)

= α(aa′|bb′).

The last equality holds since w(aa′|bb′) ≥ 0 by definition.

Case 3: α(a|a′bb′) = 2aa′. Then, 2aa′ ≤ aa′ + ab − a′b, 2aa′ ≤ aa′ +
ab′ − a′b′, i.e.

a′b ≤ ab− aa′

a′b′ ≤ ab′ − aa′,

which implies

a′b+ a′b′ − bb′ ≤ ab+ a′b′ − aa′ − bb′

a′b′ + a′b− bb′ ≤ ab′ + a′b− aa′ − bb′.

That is, β(a′|bb′) ≤ β(aa′|bb′). Thus, α(aa′|bb′) 6= β(aa′|bb′), but we
have prove that w(aa′|bb′) ≤ α(aa′|bb′) in this case.

In summary, w(aa′|bb′) = α(aa′|bb′) for m = 2 and n = 2.

(3) For m ≥ 2 and n ≥ 2, since both methods take the minimum of
w(a, a′|b, b′) where a, a′ ∈ A and b, b′ ∈ B, by induction, the weights
calculated are the same.

3 Consistency of Quartet-Net

We assume that the quartet and triplet weights that are used as the input
for Quartet-Net are induced by a weighted 2-weakly compatible split system.
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More precisely, let S be a split system and let w be a weight function that
associates a positive weight w(S) to every full split S in S. Then the induced
weight w(A′|B′) of a (partial) split A′|B′ is defined by

w(A′|B′) =
∑

A|B∈S:A|B displays A′|B′

w(A|B).

In this section we will prove that Quartet-Net, run with the triplet and
quartet weights induced by a 2-weakly compatible split system S with weight
function w as its input, will output precisely all splits A|B in S with weight
w(A|B). Note that this notion of induced weights for partial splits and
consistency directly corresponds to the distance induced by a weighted split
system and the consistency of a distance-based method.

We need the following property of 2-weakly compatible split systems.

Lemma 3. Let S be a 2-weakly compatible split system and let A|B be a
non-trivial full split in S. Then there is a non-trivial partial split A

′|B′
with

|A′|, |B′| ≤ 3 such that A′|B′ is displayed by A|B and by no other full split
in S.

Proof. Let A′|B′ be a maximal non-trivial split such that A′|B′ is displayed
by A|B and by no other full split in S. Maximal means that every partial
split that is displayed by A′|B′ but not equal to A′|B′ is displayed by at least
two different split in S. Such a split exists because A|B is displayed by itself
and by no other full split in S.

Assume thatA′ orB′, sayB′, has at least four different elements b1, b2, b3, b4
and let a1, a2 be different elements of A′. Then, for i = 1, ..., 4, there is a
split Ai|Bi in S such that Ai|Bi is not equal to A|B and displays A′|B′ − bi.
Since A|B is the only split in S that displays A′|B′, the split Ai|Bi must
display Ai + bi|B − bi. But then the four splits Ai|Bi for i = 1, ..., 4 can not
be 2-weakly compatible, a contradiction.

We define A|B to be an (i, j)-split if |A| = i and |B| = j, or |A| = j and
|B| = i, and to be a 2-split if |A| = 2 or |B| = 2.

Proposition 1. Let S be a 2-weakly compatible split system and let A|B be
a non-trivial 2-split in S. Then there is a quartet or (2, 3)-split A′|B′ such
that A′|B′ is displayed by a full split A|B and by no other full split in S.
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Proof. By Lemma 3, there is a non-trivial partial split A′|B′ that is displayed
by A|B and by no other full split in S. Since A′|B′ is non-trivial, |A′| ≥ 2
and |B′| ≥ 2. In addition, A|B is a 2-split and A′|B′ is displayed by A|B,
which forces A′|B′ to be a 2-split, say |A′| = 2. By Lemma 3, |B′| ≤ 3. Thus,
A′|B′ is a quartet or (2, 3)-split.

The following lemma follows directly from the definition of the induced
weight for partial splits.

Lemma 4. Given a split system S with weight function w, let A′|B′ be a
partial split that is displayed by a full split A|B ∈ S and by no other full split
in S, then w(A′|B′) = w(A|B).

Theorem 1. If the Quartet-Net algorithm is applied to triplet and quartet
weights that are induced by a weighted 2-weakly compatible split system S on
X, then it will output the splits in S with correct weights.

Proof of Theorem 1. In view of the identities that were used to define the
weights that Quartet-Net assigns to the (2, 3)-splits, their weights are com-
puted correctly. Note that the equality

w(aa′|bb′b′′) =
1

2

(
w(aa′|bb′)−w(bb′|b′′a)+w(b′′a|a′b)−w(a′b|b′b′′)+w(b′b′′|aa′)

)
always holds (even after permuting a, a′ resp. b, b′, b′′) since the quartet
weights are induced by a weighted split system on {a, a′, b, b′, b′′}. Hence,
taking the minimum or the average of these six identical numbers does not
effect the consistency of the algorithm. Further, Proposition 1 implies that
for every 2-split A|B in S there is a quartet or (2, 3)-split that is displayed by
A|B and no other full split in S, thus the weights of all 2-splits are computed
correctly. Applying the same argument to subsets of X with six elements, we
have that the weights of all (2,4)-splits are computed correctly as well. Since
for every (3, 3)-split A|B with a ∈ A the weight of A|B equals the weight
of A − a|B minus the weight of A − a|B + a, the weights of all (3, 3)-splits
are computed correctly. We have proved that the weights of all non-trivial
(i, j)-split with i ≤ 3 and j ≤ 3 are computed correctly. Lemma 3 implies
that for every split A|B in S with |A|, |B| ≥ 3 there is an (i, j)-split with
i ≤ 3 and j ≤ 3 that is displayed by A|B and no other full split in S, thus
the weight of every such split is also computed correctly. Finally, the weight
of every trivial split x|X − x equals the weight of the triplet x|yz minus the
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sum of the weights of all non-trivial splits in S that display x|yz for every
pair {y, z} ⊂ X − x. Hence, the weights of all trivial splits are computed
correctly.
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