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Cardiac myocytes irreversibly lose their proliferative capacity soon after birth, and cardiac DNA synthesis
becomes uncoupled from mitotic division. Therefore, we examined cardiac muscle for developmental down
regulation of inducible proto-oncogenes associated with cell proliferation. c-myc mRNA decreased continuously
from day 13 of embryonic development and was dissociated from expression of thefos-related gene r-fos, which
decreased precipitously between days 3 and 7 after birth.

In cardiac muscle, recovery from infarction or other injury
is thwarted by the virtually irreversible loss of the ability of
cardiac myocytes to divide soon after birth (33, 44). DNA
synthesis in ventricular myocardium is subsequently disso-
ciated from mitotic division, resulting in the formation of
polyploid cardiac myocytes (14, 37, 38). Despite the impli-
cations of recent evidence that cellular proto-oncogenes may
have a critical role governing cell proliferation (4, 16, 22),
little or nothing is known of their expression in cardiac
muscle. In particular, autonomous myc expression (1, 36) or
microinjected myc protein (18) can in some circumstances
abrogate the requirement for specific growth factors. There-
fore, we examined the myocardial abundance of c-myc
mRNA, along with other cellular proto-oncogenes, during
normal cardiac development.
From the earliest age examined (day 13 of embryonic

development) through 16 weeks of age, the levels of the 2.4-
kilobase c-myc mRNA in rat ventricular myocardium de-
creased continuously, as determined by Northern blot
hybridization (13, 26; Fig. 1A). c-myc mRNA was most
abundant at 13 days in utero and decreased to less than
one-third of its starting value by 1 week after birth.
Glyceraldehyde 3-phosphate dehydrogenase (gad) mRNA,
expressed constitutively in other systems, did not vary
significantly (Fig. 1B), thus excluding systematic fluctua-
tions in the proportion of mRNA in the total cellular RNA.
For comparison, muscle creatine kinase (mck) mRNA levels
were determined as an indicator of myocardial differentia-
tion (35; Fig. 1C). In contrast to c-myc, mck mRNA accu-
mulated monotonically and then plateaued at 4 weeks, as
observed for a-myosin heavy-chain mRNA (25). Thus, c-
myc mRNA was relatively abundant in embryonic and
perinatal cardiac muscle, which is able to replicate DNA and
undergo mitosis. Conversely, in adult myocardium which
has undergone irreversible withdrawal from the cell cycle,
levels of c-myc mRNA were low. The time course was
consistent with the decreasing fraction of cardiac myocytes
that incorporate [3H]thymidine during the late embryonic
and perinatal period (37).
A c-fos cDNA probe revealed no signal at the anticipated

2.2-kilobase position of c-fos transcripts (Fig. 1D; 6, 7, 28,
30); the abundance of c-fos mRNA in certain other systems
is below the threshold for detection by Northern hybridiza-
tion. However, an embryonic transcript was detected at 1.8
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kilobases, as previously described for the platelet-derived
growth factor-inducible fos-related gene r-fos (7), homolo-
gous with sequences in the c-fos fragment used here (28).
The results with an authentic r-fos probe supported the
identification of this fos-related transcript as r-fos (Fig. 1E).
r-fos mRNA levels did not decrease in utero but declined
precipitously between days 3 and 7 after birth. Thus, the
expression of r-fos transcripts was developmentally regu-
lated in cardiac muscle, with expression related to but
distinct from the temporal expression of c-myc. This acute
perinatal time course for the down regulation of r-fos mRNA
in rat myocardium is compatible with the loss of mitotic
division in ventricular muscle at day 4, whereas cardiac
DNA replication persists at least through days 6 to 14 (37). In
contrast, there was no down regulation of c-Ha-ras (Fig. 1F),
whose expression in model systems does not appear to vary
with competence either to replicate DNA or divide (30).

Cultures of cardiac ventricular cells were purified for
presumptive cardiac myocytes, depleted of fibroblasts by
mitogen starvation (Fig. 2A through C), and then mitogen
stimulated (with 20% fetal bovine serum [FBS]). Essentially
all cardiac cells were quiescent initially and reinitiated DNA
synthesis by 18 h (unpublished data), as determined by flow
microfluorimetry after ethidium bromide staining (43). myc
mRNA abundance had increased eightfold at 2 h and had
returned to the base-line level by 24 h (Fig. 2D), as in other
lineages (20, 30). In contrast, mck mRNA exhibited little
down regulation at 2 h but decreased to less than 1/10 of its
starting value by 24 h (Fig. 2D). It remains to be determined
whether c-myc can be induced, or whether mck can be down
regulated, in cardiac myocytes that cannot be induced to
reinitiate DNA synthesis (older myocytes and, perhaps,
long-term cultures.)
Our results are consistent with the hypothesis that the

probability that a cardiac myoblast will exit the cell cycle, as

opposed to maintaining competence to proliferate, may be
set by the level of c-myc and r-fos proteins or, implicitly, by
their net effect in concert with differentiation-promoting
factors. For myogenic cell lines, whether differentiation or
continued division occurs depends in part upon ambient
growth factor levels in the culture medium (24, 31, 34, 41; cf.
references 12, 23, 32). Mutational analysis has suggested that
quiescence, but not irreversible withdrawal from the cell
cycle, may be obligatory for the induction of muscle-specific
genes (40). However, cardiac muscle differs from skeletal
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FIG. 1. (A through C) Accompaniment of cardiac differentiation by embryonic and postnatal down regulation of c-myc mRNA. Northern

hybridization analysis used the c-myc (panel A), gad (panel B), and mck (panel C) cDNA probes specified below. (D and E) Precipitous
decrease offos-related transcripts between days 3 and 7 in cardiac muscle. Presumptive r-fos mRNA was detected at 1.8 kilobases (arrow)
with the c-fos or r-fos hybridization probe. Parallel samples of stained 28S rRNA are shown below the autoradiogram in panel E. (F) Cardiac
differentiation does not require down regulation of c-Ha-ras mRNA. The subgenomic fragments used as hybridization probes were as follows:
myc, the 2.5-kilobase pair XbaI-HindIII fragment of pSVc-myc-1, comprising exons 2 and 3 of murine c-myc (22); gad, a 1.65-kilobase-pair
HhaI fragment of pGAD-28 (10); mck, the 0.85-kilobase-pair PstI fragment of pHMCK-Ia (M. B. Perryman, S. A. Kerner, T. J. Bohlmeyer,
and R. Roberts, submitted for publication);fos, the 2.0-kilobase-pair EcoRI-SaIl fragment of pc-fos-3, comprising exons 2 through 4 of the
murine c-fos gene (28); r-fos, the 1.05-kilobase-pair PstI fragment of pBC-JB (7); and Ha-ras, the 0.8-kilobase-pair SmaI-PstI fragment of
Harvey munne sarcoma virus clone HB-11 (11). E, Embryonic; d, days; w, weeks.

muscle in that cell proliferation and induction of the differ-
entiated phenotype are not simply reciprocal and mutually
exclusive (19, 27). The low levels of mck mRNA present in
cardiac muscle even at day 13 of embryonic development
(Fig. 1C) support this observation and are in agreement with
results of analogous reports of early induction of a-myosin
heavy-chain mRNA (25).
Mechanisms that control c-myc mRNA abundance in the

developing myocardium might plausibly include diminished
proportions of one or more high-myc subpopulations, tran-
scriptional control, a block to elongation, or mRNA trans-
port, processing, or stability (3, 5, 20). Since mRNA levels
are relatively invariant as a cell traverses the cell cycle
during logarithmic growth (42), our findings indicate that
gradations of cardiac myc mRNA abundance represent the
declining proportion of cells that remain competent to repli-
cate DNA and divide (37, 45). It is important to test this
prediction by in situ hybridization with exon 1 and exon 2
probes (3). c-myc and r-fos mRNA levels in ventricular
myocardium may in turn reflect alterations of exogenous or

autocrine growth factors (29, 39) or age-related changes in

transduction of mitogenic signals (2, 23). Therefore, it will be
of interest to determine inducible levels of c-myc mRNA in
cardiac muscle subjected to hemodynamic stresses that
induce DNA replication and reexpression of fetal contractile
proteins (17). Dissociated expression of c-myc and r-fos
during the transition from hyperplastic to hypertrophic
growth may also have implications for molecular mecha-
nisms that uncouple DNA synthesis from mitotic division in
the myocardium.
Our observations should be interpreted cautiously, how-

ever, in view of recent investigations that failed to confirm
either a direct relationship between c-myc induction and
DNA synthesis or, alternatively, between c-myc down reg-
ulation and the induction or maintenance of the differenti-
ated state (6, 9, 12). Therefore, it is critical to test more

directly the possible functional role for c-myc and other
putative regulatory elements that might influence cell prolif-
eration or differentiation, by gene transfer, to uncouple myc
expression from exogenous growth factors in a model
myogenic system. Analogously, constitutive expression of
c-myc driven by a viral promoter has been shown to block
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FIG. 2. (A through C) Phase-contrast microscopy of rat ventricular myocardial cells cultured in reduced FBS or serum-free medium for

7 days. The constituents of the media were as follows: panel A, Dulbecco modified Eagle medium-Ham F12 medium (1:1), 17 mM HEPES
(N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) (pH 7.4), 3 mM NaHCO3, 2 mM L-glutamine, 50 ,ug of gentamicin per ml, and 20%
heat-inactivated FBS; panel B, same as panel A except FBS reduced to 0.5%; panel C, serum-free medium modified from that of Hayashi and
Kobylecki (15) and containing 5 ,ug of insulin per ml, 5 ,ug of transferrin per ml, 10 ,uM hydrocortisone, 1 ng of angiotensin II per ml, 1 nM
Na2SeO4, and 1 nM LiCl. Bar = 100 ,um. (D) Northern hybridization analysis of c-myc and mck mRNA in quiescent cardiac myocytes treated
with FBS. Myocardial cell cultures (day 18 of embryonic development) were induced to differentiate for 48 h in medium containing 0.5% FBS
and were then treated with 20% FBS for the number of hours shown above each lane. Comparable results were obtained after 48 in the
serum-free medium (not shown).

differentiation of mouse erythroleukemia cells (8). In con-
trast, our recent studies of myocytes transfected with a
transcriptionally activated myc gene or a truncated erbB
gene (M. D. Schneider, M. B. Perryman, P. A. Payne, G.
Spizz, R. Roberts, and E. N. Olson, submitted for publica-
tion) indicate that autonomous myc expression by itself
prevents neither withdrawal from the cell cycle nor induc-
tion of muscle differentiation products, whereas complemen-
tary oncogenes such as myc and erbB genes (cf. reference
21) can interact cooperatively to inhibit myogenic develop-
ment.
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