Supplementary Information

Novel n-3 Immunoresolvents: Structures and Actions

Jesmond Dalli, Romain A. Colas and Charles N. Serhan

¹Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. 02115.

Supplementary Figure 1: MS-MS spectra employed for identification of n-3 DPA

monohydroxy products in mouse plasma. Mice were subjected to ischemia reperfusion injury (see Methods for details). Two h into reperfusion, blood was collected via cardiac puncture and the plasma was obtained by centrifugation, products were extracted and n-3 DPA monohydroxy products were assessed by lipid mediator metabololipidomics. Representative MS-MS spectra used for identification of (a) 17-HDPA, (b) 14-HDPA, and (c) 7-HDPA. Results are representative of n=4.

Supplementary Figure 2: Chiral lipid mediator metabololipidomics of isobaric

monohydroxy-containing acids from n-3 DPA in murine plasma with ischemia

reperfusion. In order to detect and quantify each positional isomer without ambiguity, an MRM method was established. Signature daughter ions for each monohydroxy acid (parent m/z, 345) were as follows: 17-HDPA – m/z 245, 14-HDPA – m/z 207 and 7-HDPA – m/z 143. For each enantiomer pair, the R isomer was eluted before S isomers. The signature ion for each species was unique; only two (R and S isomers) peaks are present on each extracted ion chromatogram. Results are representative of n=3.

Supplementary Figure 3: n-3 DPA resolvins: physical properties. (a-f) HPLC retention times, online UV, fragment assignments shown in inset, and tandem mass spectra for (a,b) RvD2_{n-3 DPA}, (c,d) RvD1_{n-3 DPA}, and (e,f) RvD5_{n-3 DPA}.

Supplementary Figure 4: n-3 DPA protectins: physical properties. (a–f) HPLC retention times, online UV, fragment assignments (inset), and tandem mass spectra for (a,b) $PD1_{n-3 DPA}$ and (c,d) $PD2_{n-3 DPA}$.

Supplementary Figure 5: n-3 DPA maresins: physical properties. (a-f) HPLC retention times, online UV, fragment assignments (inset), and tandem mass spectra for (a,b) MaR1_{n-3 DPA}, (c,d) MaR2_{n-3 DPA}, and (e,f) MaR3_{n-3 DPA}.

Supplementary Figure 6: n-3 DPA specialized pro-resolving mediators regulate

endothelial ICAM-1 expression. HUVEC were incubated with vehicle (0.1% EtOH in PBS) or n-3 DPA products (1nM, 15min, 37°C, pH7.45) and then incubated with TNF-α (10ng/ml, 4h, 37°C, 0.1% FSC). ICAM-1 levels were then assessed by flow cytometry using a fluorescently labeled mouse anti-human ICAM-1 antibody. The ratio of RvD1_{n-3 DPA} to RvD2_{n-3 DPA} (A) was ~ 3:1; the ratio of RvD5_{n-3 DPA} to PD1_{n-3 DPA} (B) was ~9:1; the ratio of PD1_{n-3 DPA} to PD2_{n-3 DPA} (C) was ~1:5. Results are mean ± SEM. n = 4 independent neutrophil and endothelial cell preparations (**P* <0.05; ***P* <0.05 vs. vehicle incubated cells).

а

Supplementary Figure 2

а

b

