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Estimating the number of initial exponentials to use for fitting 
We have found that 20 initial exponentials with equal log spacing of the time constants from the 

briefest to the longest interval in the distribution have been sufficient to find all of the significant 

exponentials in the examples considered in this study.  Although we have not looked at every 

published dwell-time distribution, for those examined, 20 initial exponentials should be more than 

sufficient to detect the exponential components reported in those dwell-times.  Nevertheless, it 

would be useful to have a method of estimating the minimal number of initial exponentials required 

to find the significant exponentials in a distribution.  This section presents such a method.       

           The fitting algorithm needs to start with a sufficient number of initial exponentials with time 

constants equally spaced on a log axis so that the time constant of every significant exponential in 

the fitted distribution is approximated by a time constant of one of the initial exponentials.  With 



 

 2 

this approach, the significant exponentials have already been found so that the fitting procedure 

does not have to search for exponentials, but only eliminate those exponentials that make 

insignificant contributions to the likelihood while making adjustments to the areas and time 

constants of the exponentials to maximize the likelihood.  If the ratio between the time constants of 

the adjacent initial exponentials is equal to or less than the minimal ratio of any of the significant 

adjacent exponentials summing to form the dwell-time distribution, then each significant 

exponential in the dwell-time distribution would be approximated by at least one of the initial 

exponentials, so that the significant exponentials should be found.  On this basis, if the smallest 

ratio of the time constants of adjacent initial exponentials (longer/shorter) is R, the time to be 

spanned by the initial exponentials is T2-T1, where T2 and T1 are the longest and shortest intervals in 

the distribution, respectively, and N is the number of initial exponentials required to span the time 

range, then  

 

RN-1 = T2/T1                                                                                                 (S1) 

 

which can be rearranged to   

 

N = 1 + log (T2/T1) / log R        (S2) 

 

As an example, consider the data in Fig. 1 and Table 1, were the minimal ratio between adjacent 

time constants was ~2.7 (1.48 ms/0.547 ms) and the longest, T2, and shortest, T1, intervals included 

in the fitting of the dwell-time distribution were ~18,000 ms and ~0.004 ms.  Substitution into Eq. 

S2 gives N = 16.4 for the minimum number of initial exponentials.  We found that all eight 

significant exponentials were found using from 10 to 40 initial exponentials for the data in Fig. 1 

and Table 1.  Hence, Eq. S2 should provide sufficient initial exponentials to find the significant 

exponentials.  For experimental data, the minimal ratio between adjacent exponentials is not known, 

so R could be selected to place an approximate lower limit on the sensitivity of detecting significant 

exponentials assuming sufficient intervals were available for detection.  The only drawback for 

making R smaller than needed is an increase in the time required for fitting.  As with all analysis 

programs, simulation and fitting of data similar to that being analyzed should be used to test the 

limits and applicability of the fitting programs for the types of data being analyzed.   
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Setting the minimal area for detection of an exponential in steps 4 and 5 
In steps 4 and 5 the minimal area of an exponential to be detected was set to 10-5, as this value 

allowed detection of all significant exponentials in the examples used in this paper and also appears 

suitable to detect the significant exponentials fitted to those dwell-time distributions in the literature 

that we have examined.  Hence, a single setting of 10-5 could be used for most (perhaps all) single 

channel data.  Nevertheless, to look for significant exponentials with areas < 10-5 in distributions 

with >100,000 intervals, this value could be reduced.  Maximum likelihood fitting allows the 

detection of a significant slower exponential arising from only a few intervals (see Fig. 8 in 

McManus and Magleby (19)), or even from a single interval (this can be shown by simulation and 

will not be presented here), provided that the duration of the interval or intervals from the slower 

exponential are sufficiently long compared to the time constant of the next slowest exponential.  

The minimal area that could be detected for an exponential based on a single interval would be 

approximated by 1/(the number of intervals in the distribution).  Hence, the minimal area could be 

set to < 2 x 10-6 to have the ability to detect an exponential based on a single interval from a 

distribution with 500,000 intervals.  The fitted time constant for the detection of a significant 

exponential with a single interval would be approximated by the duration of the interval, but the 

time constant and area would be very poorly defined due to stochastic variation, so additional data 

giving additional intervals from the slow exponential would be needed to place reasonable limits on 

the time constant and area.   
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SUPPORTING FIGURE S1   Intermediate steps in fitting for Fig. 1 based on Table 1.  Fig. 1              

B in the Discussion and Results section plots the distribution of initial exponentials after step 2 of 

the fitting algorithm, with 20 initial exponentials equally log spaced with an area of 0.05 each.  This 

figure then shows the results after step 5 and step 6.   

(A)  A plot of the fit after step 5, which removed six exponentials with areas <10-5, leaving 

14 of the 20 initial exponentials.  The fitted exponentials (black lines) were summed to obtain the 
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predicted distribution (continuous black line) which gives a good approximation to the data (blue 

circles), but with small differences between the sum of the exponentials and the data.  Note that this 

close approximation to the data was obtained even though the time constants of the exponentials 

were fixed to those of the initial exponentials. 

 (B) The fit after step 6.  Starting with the 14 exponentials after step 5 in part A, the data were 

refit with both the areas and the time constants as free parameters.  The fitted exponentials (black 

lines) were summed to obtain the predicted distribution which gave an excellent description of the 

data (black line through the blue circles).  This is the best (most likely) fit that is obtained to the 

data during the fitting process, but with extra exponentials that have little if any effect on the 

likelihood. 

Steps 7-10 then removed six exponentials that had insignificant effects on the likelihood 

after refitting, giving the results shown in Fig. 1.  The two fitted exponentials at 0.1503 and 0.1504 

ms had essentially the same time constants and were combined into one exponential in step 7 with 

summed area and weighted time constant with refitting after the combination.  In a similar manner, 

the two exponentials at 4.2363 and 4.2608 ms were combined, and the three exponentials at 

145.111, 145.120, and 145.122 ms were combined, with refitting after each combination. This 

combination of exponentials with time constants that differed by <2% then eliminated four 

exponentials, leaving 10.  Exponentials were then removed one by one and those that had 

insignificant effects on the likelihood after their removal and refitting were deleted.  In this manner 

exponentials at 0.03487 and 0.04693 ms ended up as a single exponential with a time constant of 

0.03885 ms and exponentials at 927.14 and 3562.8 ms ended up as a single exponential with a time 

constant of 3,311 ms, leaving the eight significant exponentials shown in Fig. 1.     
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SUPPORTING FIGURE S2   Detecting the significant exponentials requires fitting a sufficient 
number of intervals.  The results from fitting dwell-time distributions comprised of a decreasing 
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number of simulated intervals based on Table 1 are shown in A-C, where the simulated data are 
plotted as blue circles, the fitted exponential components as black dashed lines, and the sum of the 
exponential components as a continuous black line through the data points.  The plots can be 
compared with Fig. 1A which is based on 107 simulated intervals.  The relative error for the areas 
and time constants of the eight significant exponential components for fitting 107 intervals was 
0.023 ± 0.028 (mean ± SD) calculated from Table 1. 

 (A) With 170,000 simulated intervals, all eight exponentials were detected with an increased 
relative error for the parameters of 0.10 ± 0.093.  The time constants and (areas) of the fitted 
exponentials were: 0.0393 ms (0.546), 0.141 ms (0.216), 0.591 ms (0.120), 1.66 ms (0.0760), 4.77 
ms, 0.0343, 14.4 ms, (0.00574), 140 ms (0.00160), and 2623 ms (0.000043);    

(B) With 10,000 simulated intervals only six of the eight significant exponentials were 
detected.  The slowest exponential of 3,390 ms with an area of 0.000046 (Table 1) was not detected, 
as might be expected, because there would be, on average, be only 0.46 intervals from the slowest 
component, and the components at 0.547 ms and 1.48 ms were combined into a single component at 
0.85 ms with combined area.  The time constants and (areas) of the fitted exponentials were: 0.0384 
ms (0.538), 0.157 ms (0.256), 0.851 (0.1223), 3.33 ms (0.0746), and 16.6 ms 0.00680), 125 ms 
(0.00163);    

(C) For the extreme case of 1,000 simulated intervals, only four of the eight significant 
exponentials were found.  The slowest exponential of 3,390 ms was missing as expected, the next 
two slower exponentials of 148 ms and 11.9 ms were combined into an exponential at 48.5 ms with 
a fitted area of 0.00392 (about four intervals), the exponentials at 4.12 ms and 1.48 ms were 
combined into an exponential at 2.94 ms, and the exponentials at 0.547 ms and 0.139 ms were 
combined into an exponential at 0.35 ms.  The time constants and (areas) of the fitted exponentials 
were: 0.0413 ms (0.601), 0.351 ms (0.311), 2.94 ms (0.0840), and 48.5 ms (0.00392).     

Thus, as the number of intervals in the fitted dwell-time distribution was decreased, the 
errors in the estimated parameters first increased, and then with further reduction in the number of 
simulated intervals, the number of significant exponentials decreased (19) through combinations of 
exponentials.  The errors will depend on the number of exponentials, the areas and time constants of 
the exponentials, and the number of simulated intervals.  The deterioration of the fit as the number 
of fitted intervals is reduced will occur for all methods of exponential sum fitting.   
 


