CROSS-SPECIES MECHANICAL FINGERPRINTING OF CARDIAC MYOSIN BINDING PROTEIN-C

Supporting Material

Árpád Karsai¹, Miklós S. Z. Kellermayer^{2,3}, Samantha P. Harris¹*

¹University of California - Davis, Davis, CA, USA, ² MTA-SE Molecular Biophysics Research Group and ³Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.

*To Whom Correspondence Should be Addressed.

Department of Neurobiology, Physiology, and Behavior One Shields Avenue University of California-Davis Davis, CA 95616

Supporting Material

Figure S1. A) Sequence comparisons of human, bovine and mouse cMyBP-C by domain. Comparisons were performed using William Pearson's lalign software [1] with human (accession # NM_000256.3), bovine (accession # NP_001070004), and mouse (accession # AF097333) sequences. B) Table showing the percentage of identity and similarity among adjacent domains within human, bovine and mouse cMyBP-C sequences. Similarity was determined with the FASTA sequence comparison software of University of Virginia [2]. Dash indicates that there was no significant similarity between the domains.

Figure S2. Histogram showing the contour length gain (Δ L) of the unfolded Ig/FNIII domains of human (32.3 ± 11.8 nm, n=340, gray) and bovine (31.7 ± 11.3 nm n=171, dark dashed) cMyBP-C.

Figure S3. Histogram of the magnitude of all force drops of human cMyBP-C. The red arrow on the example force extension curve above the histogram indicates the magnitude of the force drop (ΔF) . ΔF was measured as the force difference (pN) between the two peaks.

Figure S4. Histograms of simulated unfolding force values for bovine, human and mouse cMyBP-C obtained from Monte-Carlo simulations.

Figure S5. Force extension curves of human cMyBP-C with (top, middle) and without (bottom) force drops. The length gain before and after the force drops (≈ 60 nm which is equal to the unfolded length of two domains) is indicated with a dashed box.

Figure S6. Computational predictions of intrinsically disordered segments (IDRs) within cMyBP-C. The VL3 PONDR algorithm [3] was used to predicted IDRs (red lines) for cMyBP-C from A) human, B) bovine and C) mouse. A disorder score greater than 0.5 indicates increased propensity towards disorder. Blue peaks are the predicted domain boundaries obtained from DomPred [4]. D. Results of VLXT PONDR [5] predictions superimposed for each of the three cMyBP-C proteins showing that the P/A region, the M-domain and C2-C3 C6-C7 regions could contains IDRs as well as the CD loop within the C5 domain.

References for Supporting Material

- 1. Huang, X., and W. Miller, *A time-efficient, linear-space local similarity algorithm*. Adv. Appl. Math. 1991 **12**: p. 337-357.
- 2. Pearson, W.R. and D.J. Lipman, *Improved tools for biological sequence comparison*. Proc Natl Acad Sci U S A, 1988. **85**(8): p. 2444-8.
- 3. Radivojac, P., et al., *Prediction of boundaries between intrinsically ordered and disordered protein regions*. Pac Symp Biocomput, 2003: p. 216-27.
- 4. Bryson, K., et al., *Protein structure prediction servers at University College London*. Nucleic Acids Res, 2005. **33**(Web Server issue): p. W36-8.
- 5. Romero, P., et al., *Sequence complexity of disordered protein*. Proteins, 2001. **42**(1): p. 38-48.