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Supplementary information
A. Motor kinetics as wandering in a landscape
•Motor kinetics as wandering in a mechano-chemical landscape

Suppose the continuous variablesX1 ≡ X andX2 ≡ ξ denote the mechanical
and chemical states of the motor, respectively. The equation governing the time
evolution of the probability density P(X1, X2, t) is
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where U(X1, X2) is the potential of mean force and γi (i = 1, 2) are the measures
of dissipation. The two terms on the right hand side of eq.(1) account for the
diffusion and drift of the motor in this landscape.
•Motor kinetics as wandering in the time-dependent mechanical landscape

Let X and σ denote the mechanical and chemical states of the motor, re-
spectively, where the latter, unlike ξ, is a discrete variable. An arbitrary value
of X is denoted by x while an arbitrary value of σ is denoted by µ. Wµ→ν(x)
is the transition probability per unit time for the transition from µ to ν while
the mechanical variable x remains frozen at the current instantaneous value x.
The time evolution of the state of the motor is described by
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which is a hybrid of Fokker-Planck and master equations. Note that there is
no term in this equation which would correspond to a mixed mechano-chemical
transition.
B. Motor kinetics as a jump process in a fully discrete mechano-
chemical network

Let Pµ(i, t) be the probability of finding the motor at the discrete position
labelled by i and in the discrete chemical state µ at time t. The symbol kµ(i → j)
denotes a purely mechanical transition i → j while the chemical state µ remains
unaltered. Similarly, Wµ→ν(i) denotes a purely chemical transition µ → ν while
the mechanical state i remains frozen. Mixed mechano-chemical transitions
that involve both the transitions i → j and µ → ν are denoted by the symbol
ωµ→ν(i → j).

Then, the master equation for Pµ(i, t) is given by
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where the terms enclosed by the three different brackets [.] correspond to the
purely mechanical, purely chemical and mechano-chemical transitions, respec-
tively.
C. Statistical inference from data: frequentist and Bayesian approaches

For simplicity, let us consider a motor that has only two possible distinct
interconvertible states denoted by E1 and E2.

E1
kf
⇀↽
kr

E2 (4)

We begin our discussion assuming that the actual sequence of the states, gener-
ated by the Markovian kinetics of the motor, is available over the time interval
0 ≤ t ≤ T . Our aim is to extract the magnitudes of the rate constants kf and
kr.

Suppose t(1)j and t(2)j denote the time interval of the j-th residence of the
device in states E1 and E2, respectively. Moreover, suppose that the device
makes N1 and N2 visits to the states E1 and E2, respectively, and N = N1 +N2

is the total number of states in the sequence. Therefore, total time of dwell in

the two states are T1 =
∑N1

j=1 t
(1)
j and T2 =

∑N2
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(2)
j where T1 + T2 = T .

Since the times of dwell in each state are exponentially distributed, the
likelihood of any state trajectory S is the conditional probability density
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for given kf and kr. Using (5) in d[lnP (S|kf , kr)]/dkf = 0 = d[lnP (S|kf , kr)]/dkr
we get the maximum-likelihood (ML) estimates kf = N1/T1 and kr = N2/T2

for the two rate constants.
The Bayesian approach is based on the Bayes theorem which, in this case,

states that
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where P (kf , kr) is the prior. Assuming a uniform prior, i.e., a constant for
positive kf and kr, but zero otherwise, we get the poster distribution
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of the rate constants. Note that the mean of kf and kr, obtained from the
posterior distribution (7) are (N1 + 1)/T1 and (N2 + 1)/T2, respectively. The
corresponding most probable values, obtained from ML analysis, are N1/T1 and
N2/T2, respectively; the minor differences between the two alternative estimates
is insignificant if N1 and N2 are sufficiently large.
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