Supporting Information

Mechanism Elucidation of the *cis-trans* Isomerization of an Azole Ruthenium-Nitrosyl complex and its Osmium Counterpart

Anatolie Gavriluta,^{a,b} Gabriel E. Büchel,^{a,b} Leon Freitag,^c Ghenadie Novitchi^{*,a,d} Jean Bernard Tommasino,^a Erwann Jeanneau,^a Paul-Steffen Kuhn,^b Leticia González,^{*c} Vladimir B. Arion^{*,b} and Dominique Luneau^{*,a}

^a Université Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces (UMR 5615), Campus de la Doua, 69622 Villeurbanne Cedex, France

^b University of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria

^c University of Vienna, Institute of Theoretical Chemistry, Währinger Strasse 17, A-1090 Vienna, Austria

^d Laboratoire National des Champs Magnétiques Intenses-CNRS, Université Joseph Fourier, 25 Avenue des Martyrs, 38042 Grenoble Cedex 9, France

Ruthenium-, osmium-nitrosyl, 1H-indazole, cis-trans isomerization

Corresponding Authors :

*E-mail: <u>ghenadie.novitchi@lncmi.cnrs.fr</u>, (G. N.); <u>leticia.gonzalez@univie.ac.at (L.G.)</u> <u>vladimir.arion@univie.ac.at</u> (V. B. A.); <u>luneau@univ-lyon1.fr</u> (D. L.);

Figure S1 Simultaneous fitting of the real (top) and imaginary (bottom) part of an ¹H NMR spectrum using *NMRICMA* program (Helm, L. *NMRICMA*, 3.1.5; EPFL: Lausanne, 2003.)

Figure S2 ¹H, ¹H COSY NMR spectra (500 MHz) of *cis* (left) and *trans* (right) $[RuCl_4(NO)(indz)]^-$ in C₂D₂Cl₄ solution. The blues stars correspond to residual isomer presenting solution

Figure S3 ¹H, ¹H COSY NMR spectra (500 MHz) of *trans* (left) and *cis* (right) $[OsCl_4(NO)(indz)]^{-1}$ in $C_2D_2Cl_4$ solution. The blues stars correspond to residual isomer presenting solution.

Figure S4 ¹H, ¹³C HSQC NMR spectra of *trans* (left), *cis* (right) $[OsCl_4(NO)(indz)]^-$ and mixture of *trans* and *cis* (in middle) during the isomerization transformation

Figure S5 Evolution of ¹H NMR spectra (300MHz) of *trans*-[OsCl₄(NO)(Ind)]⁻ isomer function of time (τ =0÷3×10⁵s) after heating at 120°C in C₂D₂Cl₄ solution (C_{cis+trans}=15.26 mmol/L) showing the formation of the *cis* isomer. (Aromatic region).

Figure S6. NMR Kinetics of the *cis* to *trans* isomerization for $[RuCl_4(NO)(Hind)]^-$. The solid line corresponds to best fit according reversible I-st order process at indicated temperatures.

Figure S7. NMR Kinetics of the *trans* to *cis* isomerization for $[RuCl_4(NO)(Hind)]^-$. The solid line corresponds to best fit according reversible I-st order process at indicated temperatures.

Figure S8. NMR Kinetics of the *trans/cis* isomerization for [OsCl₄(NO)(indz)]⁻. The solid line corresponds to best fit according reversible I-st order process at indicated temperatures.

Figure S9. NMR Kinetics of the *trans-cis* isomerization for $[OsCl_4(NO)(indz)]^-$. The solid line correspond to best fit according reversible I-st order and the dashed line correspond to irreversible I-st order reaction at indicated temperatures.

Figure S10 van't Hoff plot for *cis/trans* isomerization of [RuCl₄(NO)(Hind)]⁻. Solid line correspond to best fit with following thermodynamic parameters $\Delta H^o = 13.5 \pm 1.5$ kJ/mol $\Delta S^o = -5.2 \pm 3.4$ J/(mol·K)

Figure S11. Evolution of ¹H NMR spectra (300MHz) of *trans*-[OsCl₄(NO)(Ind)]⁻ isomer function of time: b) 2 days; c) 3 days; d) 4 days; e) 5 days after heating at 100°C in DMSO solution ($C_{cis+trans}=18.51 \text{ mmol/L}$). In the left is deconvolution and assignments of signals.

Figure S12. Oxidation of *cis*-[RuCl₄(NO)(Hind)]⁻, (red) and *trans*-[RuCl₄(NO)(Hind)]⁻, (blue) by cyclic voltammetry in the same experimental condition as Os isomers

Figure S13. UV–vis spectra of acetonitrile solutions (0.1M) of *trans*- $[OsCl_4(NO)(Hind)]^-$, before (blue) and after (red) electrolysis.

Figure S14. Cyclic voltammetry of *trans*- $[OsCl_4(NO)(Hind)]^-$, before (blue) and after (red) electrolysis.

Figure S15. UV–vis spectra of acetonitrile solutions (0.1M) of *cis*- $[OsCl_4(NO)(Hind)]^-$, before (blue) and after (red) electrolysis.

Figure S16. Cyclic voltammetry of cis-[OsCl₄(NO)(Hind)]⁻, before (blue) and after (red) electrolysis.

Figure S17. Cyclic voltammetry of *cis*- $[OsCl_4(NO)(Hind)]^-$, (red), *trans*- $[OsCl_4(NO)(Hind)]^-$, (blue) and their mixture (green) at 100 mV/s on GC electrode (3 mm) in acetonitril solution.

Figure S18. Exhaustive electrolysis of *cis*- $[OsCl_4(NO)(Hind)]^-$, (red) – corresponding 2e and *trans*- $[OsCl_4(NO)(Hind)]^-$, (blue) – corresponding 1e.

All geometries reported below have been optimized at the B3LYP/6-31G* level of theory.

Optimised structures of 1 **and** 2:

			(/]
Ru	-1.276071	0.011832	0.061736
Cl	-1.036380	-2.426595	0.090517
Cl	-1.049035	-0.096205	-2.300444
Cl	-1.461495	2.416166	-0.141124
Cl	-3.654993	-0.203862	-0.205199
0	-1.498289	0.115384	2.963741
Ν	0.835484	0.178292	0.078594
Ν	1.598765	-0.939217	0.031052
Н	1.090125	-1.844591	0.012385
Ν	-1.409839	0.077743	1.804046
С	1.637940	1.249245	0.107227
Н	1.196301	2.252773	0.137315
С	2.996569	0.815010	0.079427
С	4.263281	1.455751	0.092531
Н	4.338657	2.554243	0.131952
С	5.405131	0.655505	0.055214
Н	6.401859	1.126316	0.064455
С	5.313271	-0.768110	0.005179
Н	6.241631	-1.362305	-0.023018
С	4.083949	-1.429524	-0.008790
Н	4.015358	-2.527323	-0.046786
С	2,926112	-0.618194	0.029130

Table S1. Optimised structure of *cis*-[RuCl₄(NO)(Hind)]⁻

Table .	S2. Optimised structure	re of <i>trans</i> -[RuCl ₄ (NO	D)(Hind)] [–]
Ru	1.361441	0.005087	0.000132
Cl	1.434180	2.413687	0.000189
Cl	1.162027	0.016383	2.403711
Cl	1.043858	-2.416562	0.000109
Cl	1.163296	0.016491	-2.403625
Ν	-0.792805	0.165964	-0.000251
Ν	-1.561942	-0.946922	-0.000327
Н	-1.059492	-1.854941	-0.000219
С	-1.594460	1.238496	-0.000162
Н	-1.152240	2.241756	-0.000101
С	-2.954406	0.809996	-0.000163
С	-4.219069	1.455293	-0.000096
Н	-4.290699	2.554792	-0.000046
С	-5.363232	0.657818	-0.000154
Н	-6.358769	1.131247	-0.000142
С	-5.275555	-0.767304	-0.000272
Н	-6.206016	-1.358879	-0.000325
С	-4.048499	-1.432866	-0.000298
Н	-3.983381	-2.531564	-0.000279
С	-2.888354	-0.623710	-0.000263
Ν	3.091568	-0.147613	0.000181
\cap	4 247749	-0 261563	-0 000097

reaction coordinate

Transition states and intermediates for the dissociative mechanism

Table S.	3 . O	ptimised	structure	of the	cis-ts	transition	state	(cf. Fig.	9a)
R11	-1	82862	61 -	-0.2	6305	92 -	0.0	12297	1

ĸu	-1.0200201	-0.2630392	-0.01229/1
Cl	-0.2068541	-2.0733541	0.3057911
Cl	-1.4937186	-0.5293395	-2.2925932
Cl	-3.2195174	1.6023672	-0.5326078
Cl	-3.5912617	-1.6884653	0.4694141
0	-1.2654225	0.7782187	2.6441964
Ν	1.8142508	1.3265149	0.2989244
Ν	2.1362990	0.0248128	0.1516627
Н	1.3697516	-0.6953116	0.1505347
Ν	-1.5695977	0.3075682	1.6164919
С	2.9596347	2.0120584	0.2833604
Н	2.9416899	3.1059534	0.3878927
С	4.0830113	1.1358408	0.1229000
С	5.4913736	1.2608549	0.0368175
Н	5.9730217	2.2519478	0.0958641
С	6.2587015	0.1047703	-0.1295604
Н	7.3571454	0.1828196	-0.2002593
С	5.6480637	-1.1799515	-0.2089641
Н	6.2862615	-2.0702583	-0.3427308
С	4.2622404	-1.3380454	-0.1279116
Н	3.7856815	-2.3289793	-0.1939191
С	3.4868779	-0.1679454	0.0407627

Table S4.	Optimised structure	e of the <i>cis-min</i> int	ermediate (cf. Fig. 9a)
Ru	-2.144979	-0.836111	-0.381036
Cl	-0.764606	-1.413157	1.526221
Cl	-0.503320	-1.819543	-1.716319
Cl	-3.259121	-0.202294	-2.402443
Cl	-3.555493	-2.628719	0.026116
0	-3.509202	1.221653	1.151385
Ν	2.140927	1.411474	2.106682
Ν	1.929373	0.400074	1.228593
Н	1.035046	-0.128384	1.257405
Ν	-3.034452	0.341181	0.559133
С	3.387223	1.844478	1.893741
Н	3.789971	2.675765	2.490197
С	4.026389	1.094116	0.851360
С	5.294753	1.087459	0.216237
Н	6.078597	1.803428	0.513945
С	5.526393	0.149813	-0.794183
Н	6.505059	0.123614	-1.301660
С	4.517881	-0.778929	-1.187569
Н	4.738548	-1.500535	-1.991937
С	3.258058	-0.796841	-0.581352
Н	2.473596	-1.505641	-0.889451
С	3.027678	0.149435	0.444079

Table	S5 . Optimised struct	ure of the ts transition	n state (cf. Fig. 9a)
Ru	-1.8193053	-0.0106152	-0.0338891
Cl	-0.2859209	-1.3440147	1.3035224
Cl	-0.5407613	-0.6172464	-1.8890175
Cl	-3.2099955	1.2016667	-1.5494331
Cl	-3.5753555	-1.3903300	0.5912617
0	-1.9737374	2.0822640	1.9559744
Ν	3.3291395	0.4373665	2.3112381
Ν	2.6867923	-0.0679774	1.2348418
Н	1.6925896	-0.3823435	1.3076510
Ν	-1.9947709	1.1812292	1.2046979
С	4.5805789	0.6920984	1.9193964
Н	5.2984683	1.1189110	2.6347203
С	4.7800417	0.3402200	0.5439752
С	5.8436480	0.3720296	-0.3923081
Н	6.8379216	0.7540974	-0.1039023
С	5.6044836	-0.0890099	-1.6891517
Н	6.4187970	-0.0722776	-2.4338062
С	4.3229588	-0.5795563	-2.0744192
Н	4.1714098	-0.9283859	-3.1101260
С	3.2518316	-0.6222777	-1.1786122
Н	2.2514629	-0.9806274	-1.4699580
C	3 4998699	-0 1601000	0 1338772

Table S6.	Optimised structure	of the trans-min i	ntermediate (cf. Fig. 9a)
Ru	-2.300696	-0.935220	-0.144921
Cl	-0.995646	-0.729878	1.829660
Cl	-0.548650	0.178844	-1.283562
Cl	-3.017384	-1.788944	-2.225793
Cl	-3.433475	-2.729036	0.888526
0	-4.192845	1.192473	0.204549
N	2.337065	1.333990	2.221004
Ν	1.996747	0.585715	1.143899
Н	1.017402	0.270347	1.035239
Ν	-3.417416	0.330971	0.068643
С	3.651791	1.555514	2.129420
Н	4.163324	2.151935	2.898549
С	4.202213	0.931170	0.961219
С	5.483459	0.816547	0.363681
Н	6.365044	1.292593	0.824198
С	5.600994	0.085068	-0.821374
Н	6.587078	-0.018829	-1.303982
С	4.465799	-0.532878	-1.424082
Н	4.598563	-1.099933	-2.360769
С	3.189908	-0.437537	-0.860338
Н	2.311839	-0.907991	-1.329285
C	3 072916	0 300449	0 340999

Lavie	57. Optimised struct	ure of the <i>trans-is</i> tran	isition state (ci. 14g.)
Ru	1.7052941	-0.0631116	-0.0492646
Cl	2.4122990	2.1801582	-0.1140155
Cl	1.4143159	0.1596188	2.2794955
Cl	0.3556797	-2.0700721	0.0516608
Cl	1.1288071	0.1077541	-2.3287113
Ν	-1.8014738	1.0767546	0.0740692
Ν	-2.1978278	-0.2109422	0.0695651
Н	-1.4549794	-0.9472819	0.0674215
С	-2.9063875	1.8229956	0.0584086
Н	-2.8234096	2.9185192	0.0587966
С	-4.0810403	1.0004191	0.0411430
С	-5.4830324	1.1990415	0.0189166
Н	-5.9058759	2.2182114	0.0112030
С	-6.3204347	0.0800058	0.0058419
Н	-7.4154352	0.2158518	-0.0122880
С	-5.7852304	-1.2398020	0.0148670
Н	-6.4764512	-2.1000669	0.0041247
С	-4.4069742	-1.4705142	0.0362878
Н	-3.9928725	-2.4914121	0.0427322
С	-3.5604535	-0.3386239	0.0488434
Ν	3.2157399	-0.8318155	-0.1338248
0	4.2795514	-1.3277369	-0.1926170

Table S7. Optimised structure of the trans-ts transition state (cf. Fig. 9a)

Twist mechanism

Transition states for the associative and twist mechanism

Table S8.	Optimised	structure	of the	transition	state	of the	associative	mechanism
(cf. Fig. 91	o)							

Ru	0.040050	-0.076913	0.200593
Ν	0.321857	-0.198382	1.873079
0	0.414491	-0.274272	3.029111
Cl	-1.813033	0.246347	-1.989402
Cl	2.520750	-0.383226	0.174489
Cl	-0.295061	-2.452649	-0.090328
Ν	1.009905	-0.104535	-2.237677
С	1.577838	0.781650	-3.029880
С	1.899590	0.185969	-4.287177
С	1.461884	-1.163311	-4.161598
Ν	0.954807	-1.274464	-2.903160
С	2.494503	0.608139	-5.489824
С	2.632810	-0.306893	-6.523516
С	2.187559	-1.642739	-6.380327
С	1.600220	-2.091586	-5.206226
Cl	0.281496	2.328200	0.139716
Ν	-2.058765	0.157396	0.786315
Ν	-2.603129	1.391025	0.871285
С	-3.909301	1.312686	1.240929
С	-4.181830	-0.064737	1.467287
С	-2.961382	-0.731415	1.162579
С	-4.886145	2.305878	1.425631
С	-6.138135	1.885945	1.844749
С	-6.426783	0.519213	2.082626
С	-5.462995	-0.458307	1.898880
Н	-2.053960	2.147633	0.466645
Η	-2.709224	-1.781534	1.151932
Н	-5.688246	-1.506242	2.077154
Η	-7.424186	0.239194	2.410952
Η	-6.922273	2.624061	1.993569
Η	-4.668446	3.353656	1.242390
Н	0.471739	-2.038337	-2.443857
Н	1.259571	-3.117678	-5.099101
Η	2.308952	-2.333384	-7.211720

Н	1.726208	1.792168	-2.677380
Η	3.088867	0.001829	-7.461097
Н	2.837100	1.633480	-5.605949

1 15. 70)			
Ru	-0.002133	-0.004186	-0.003193
Ν	-0.002965	0.002165	2.475156
С	-0.297303	-0.960282	3.330805
С	0.100306	-0.585947	4.647175
С	0.669792	0.709135	4.497157
Ν	0.590721	1.002004	3.171712
С	0.044159	-1.174436	5.925222
С	0.545622	-0.465097	7.004405
С	1.104635	0.826142	6.835024
С	1.177239	1.432392	5.591043
Ν	1.287736	-0.008314	-1.138860
0	2.090310	-0.182434	-1.960263
Cl	-1.933396	-1.346514	0.522179
Cl	-1.457592	0.844652	-1.721916
Cl	0.317297	2.341364	0.465335
Cl	1.391708	-2.140459	0.616705
Н	0.811029	1.841244	2.642643
Н	-0.761188	-1.863732	2.966073
Н	-0.383407	-2.164690	6.057826
Н	0.513266	-0.900459	7.999789
Н	1.487708	1.353604	7.705314
Н	1,608390	2,421508	5,465845

Table S9. Optimised structure of the transition state of the twist mechanism (cf. Fig. 9c)

