|  | 1 | l |
|--|---|---|
|  |   | L |
|  |   |   |
|  |   |   |

- 2
- 3

# Genomic islands of divergence and their consequences for the resolution of spatial structure in an exploited marine fish

6

Ian R. Bradbury<sup>1,4,5\*</sup>, Sophie Hubert<sup>2</sup>, Brent Higgins<sup>2</sup>, Sharen Bowman<sup>2</sup>, Tudor Borza<sup>2,3</sup>,
Ian G. Paterson<sup>4</sup>, Paul V.R. Snelgrove<sup>5</sup>, Corey J. Morris<sup>1</sup>, Robert S. Gregory<sup>1</sup>, David
Hardie<sup>4</sup>, Jeffrey A. Hutchings<sup>4</sup>, Daniel E.Ruzzante<sup>4</sup>, Christopher T. Taggart<sup>6</sup>, Paul
Bentzen<sup>4</sup>

11

<sup>1</sup>Department of Fisheries and Oceans, 80 East White Hills Road, St. John's, Newfoundland, Canada, A1C 12 5X1. <sup>2</sup>Atlantic Genome Center, Halifax, Nova Scotia, Canada, B3H3Z1, <sup>3</sup>Department of Plant and Animal 13 Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada, <sup>4</sup>Marine Gene 14 Probe Laboratory, Department of Biology, Dalhousie University, 1359 Oxford Street, Halifax Nova Scotia, 15 B3H4R2..<sup>5</sup>Ocean Sciences Center and Biology Department, Memorial University of Newfoundland, St. 16 John's, NL A1C 5S7, P.O. Box 4200, CANADA. <sup>6</sup>Department of Oceanography, Dalhousie University, 17 1359 Oxford Street, Halifax Nova Scotia, B3H4R2 \*To whom correspondence should be addressed. 18 Email: ibradbur@me.ca 19

- 20
- 21
- 22
- 23
- 24
- 25 THE PDF INCLUDES:
- 26 METHODS
- 27 TABLES S1-S4
- 28 FIGURE S1
- 29
- 30

#### 31 Methods

#### 32 Sample Collection and Location Characteristics

33 Individuals were sampled at 23 locations from throughout the North Atlantic (Fig 1, Table S1) 34 from 1996 to 2007. Sample sizes ranged from 15 to 26. Samples were collected as part of scientific surveys or commercial harvest and primarily targeted fish in spawning condition with 35 36 the exception of Ogac Lake and Gilbert Bay where sampling was restricted to summer months. 37 Specific details regarding some samples and locations are published elsewhere (e.g., Taggart and 38 Cook 1996; Bradbury et al. 2009; Hubert et al. 2009, 2010). Although the potential for mixing 39 of local stocks within our samples exists, the large geographic scale examined here and the 40 nature of the trends observed should minimize the impact of small scale mixtures, but this cannot 41 be discounted.

#### 42 SNP Development and Linkage Mapping

The initial cDNA libraries were developed using 884 individuals (Bowman et al. 2010) focusing 43 on SNPs with > 100 bp of flanking sequence. Of the 3072 putative SNPs identified, 2284 (~74%) 44 were selected following screening, of which 1641 were informative (53%). Elsewhere we have 45 46 argued that these SNPs were identified from sequencing ESTs averaging 800-1000bp in length from the 3' end and likely represent single genes (Bradbury et al. 2010). The only exception was 47 a pair of SNPs (S1039a and S1039b) identified from a contig. The genetic linkage map was 48 49 constructed using JoinMap4® (Van Ooijen 2006) and the three families described elsewhere (Bradbury et al 2010 and Borza et al 2010). Mapping was performed using a LOD cut-off value 50 of 5.0 and Haldane's mapping function (for more details on mapping see Hubert et al 51 52 2010, Bradbury et al 2010 and Borza et al 2010). The map generated by the first round of 53 calculations of the regression mapping algorithm included only 987 SNPs and contained 58% of

outliers identified using Bayescan (LGMAP1). A significantly higher number of outlier loci were 54 mapped in the third round of mapping calculations where JoinMap<sup>®</sup>4 was allowed to force 55 additional markers with a lower goodness-of-fit into the map (for further details and description 56 of a similar map see Borza et al. 2010). This approach resulted in 1295 SNPs being mapped 57 successfully (LGMAP2) and contained all outliers. Comparison of the two maps revealed little 58 change in map position of the outlier SNPs which were in common (median change in position 59 60 of 0.69 cM). Accordingly, LGMAP2, generated by the third round of mapping calculations, was used in all subsequent analyses. 61

62

63

|     | Location                            | Year | Previously<br>analyzed  | Ν  | Но    | Не    | %<br>Polymorphic |
|-----|-------------------------------------|------|-------------------------|----|-------|-------|------------------|
| 1.  | Cox's Ledge                         | 2008 | No                      | 31 | 0.358 | 0.358 | 99.00%           |
| 2.  | Georges Bank (A)                    | 2006 | Bradbury et al.<br>2010 | 24 | 0.361 | 0.360 | 99.22%           |
| 3.  | Georges Bank (B)                    | 2008 | Bradbury et al.<br>2010 | 20 | 0.363 | 0.357 | 98.93%           |
| 4.  | Cape Sable, NS                      | 2006 | Bradbury et al.<br>2010 | 23 | 0.362 | 0.359 | 99.29%           |
| 5.  | Gulf of St. Lawrence (A)            | 1996 | No                      | 23 | 0.346 | 0.342 | 97.30%           |
| 6.  | Gulf of St. Lawrence (B)            | 1996 | No                      | 9  | 0.363 | 0.338 | 92.60%           |
| 7.  | Gulf of St. Lawrence (C)            | 2002 | No                      | 23 | 0.385 | 0.345 | 96.73%           |
| 8.  | Flemish Cap                         |      | No                      | 9  | 0.313 | 0.305 | 87.40%           |
| 9.  | St. Mary's Bay, NL                  | 2006 | Bradbury et al. 2010    | 25 | 0.358 | 0.350 | 97.30%           |
| 10. | Holyrood Pond, NL                   | 2007 | Bradbury et al. 2010    | 20 | 0.357 | 0.351 | 96.80%           |
| 11. | Bay Bulls, NL                       | 2007 | Bradbury et al. 2010    | 23 | 0.350 | 0.353 | 97.22%           |
| 12. | Smith Sound, NL (A)                 | 2007 | Bradbury et al.<br>2010 | 20 | 0.358 | 0.351 | 96.37%           |
| 13. | Smith Sound B, NL (B)               | 2008 | Bradbury et al.<br>2010 | 23 | 0.354 | 0.354 | 97.79%           |
| 14. | Newfoundland Shelf (A)              | 2009 | No                      | 12 | 0.351 | 0.343 | 94.73%           |
| 15. | Newfoundland Shelf (B)              | 2009 | No                      | 12 | 0.352 | 0.335 | 94.31%           |
| 16. | Gilbert Bay, NL                     | 2004 | Bradbury et al. 2010    | 21 | 0.309 | 0.304 | 90.11%           |
| 17. | Ogac Lake, Baffin Island            | 2004 | Bradbury et al.<br>2010 | 18 | 0.253 | 0.253 | 76.23%           |
| 18. | Tariujarusiq Lake, Baffin<br>Island | 2004 | No                      | 24 | 0 240 | 0 234 | 76 80%           |
| 19. | Davis Strait                        | 2009 | No                      | 23 | 0.240 | 0.254 | 70.80%<br>87.40% |
| 20. | Barents Sea, Norway                 | 2008 | Bradbury et al.<br>2010 | 26 | 0.239 | 0.238 | 78.22%           |
| 21. | Akureyri, Iceland                   | 2008 | Bradbury et al.<br>2010 | 26 | 0.258 | 0.258 | 85.05%           |
| 22. | Baltic Sea                          | 1996 | Bradbury et al. 2010    | 16 | 0.222 | 0.220 | 69.40%           |
| 23. | Galway Bay, Ireland                 | 2008 | Bradbury et al. 2010    | 15 | 0.242 | 0.236 | 74.73%           |

64 Table S1. Details on sample locations and SNP summary statistics. See Methods for further information.

## Table S2. Pairwise $F_{ST}$ values for all samples and all SNPs. P-values above the diagonal and $F_{ST}$ values below.

|                             | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 19    | 20    | 21    | 22    | 23    |
|-----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1. Cox's Ledge              |       | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2. Georges Bank (A)         | 0.009 |       | 0.488 | 0.664 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 3. Georges Bank (B)         | 0.010 | 0.000 |       | 0.187 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 4. Cape Sable (NS)          | 0.007 | 0.000 | 0.001 |       | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 5. Gulf of St. Lawrence (A) | 0.052 | 0.034 | 0.040 | 0.042 |       | 0.190 | 0.305 | 0.001 | 0.002 | 0.013 | 0.000 | 0.003 | 0.000 | 0.117 | 0.156 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 6. Gulf of St. Lawrence (B) | 0.054 | 0.037 | 0.042 | 0.045 | 0.002 |       | 0.275 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.013 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 7. Gulf of St. Lawrence (C) | 0.048 | 0.033 | 0.037 | 0.040 | 0.002 | 0.001 |       | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.013 | 0.008 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 8. St. Mary's Bay (NL)      | 0.044 | 0.021 | 0.025 | 0.028 | 0.010 | 0.010 | 0.009 |       | 0.287 | 0.862 | 0.084 | 0.221 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 9. Holyrood Pond (NL)       | 0.045 | 0.023 | 0.026 | 0.031 | 0.011 | 0.015 | 0.011 | 0.001 |       | 0.438 | 0.517 | 0.363 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 10. Bay Bulls (NL)          | 0.047 | 0.022 | 0.027 | 0.031 | 0.006 | 0.008 | 0.008 | 0.000 | 0.000 |       | 0.106 | 0.176 | 0.000 | 0.003 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 11. Smith Sound (NL)        | 0.044 | 0.021 | 0.024 | 0.028 | 0.015 | 0.018 | 0.015 | 0.002 | 0.000 | 0.001 |       | 0.040 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 12. Smith Sound (NL)        | 0.047 | 0.024 | 0.027 | 0.032 | 0.006 | 0.012 | 0.009 | 0.001 | 0.001 | 0.001 | 0.002 |       | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 13. Gilbert Bay (NL)        | 0.100 | 0.080 | 0.085 | 0.086 | 0.080 | 0.078 | 0.074 | 0.064 | 0.059 | 0.061 | 0.058 | 0.065 |       | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 14. Newfoundland Shelf (A)  | 0.047 | 0.034 | 0.038 | 0.042 | 0.003 | 0.010 | 0.007 | 0.010 | 0.010 | 0.006 | 0.013 | 0.008 | 0.074 |       | 0.290 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 15. Newfoundland Shelf (B)  | 0.052 | 0.036 | 0.040 | 0.045 | 0.002 | 0.004 | 0.008 | 0.013 | 0.016 | 0.007 | 0.019 | 0.007 | 0.084 | 0.001 |       | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 16. Flemish Cap             | 0.086 | 0.069 | 0.076 | 0.078 | 0.036 | 0.041 | 0.040 | 0.053 | 0.054 | 0.040 | 0.058 | 0.046 | 0.122 | 0.035 | 0.029 |       | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 17. Ogac Lake               | 0.161 | 0.142 | 0.147 | 0.155 | 0.145 | 0.146 | 0.137 | 0.132 | 0.131 | 0.130 | 0.135 | 0.133 | 0.193 | 0.140 | 0.147 | 0.149 |       | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 18. Tariujarusiq Lake       | 0.159 | 0.145 | 0.151 | 0.157 | 0.136 | 0.132 | 0.126 | 0.141 | 0.145 | 0.131 | 0.146 | 0.135 | 0.211 | 0.124 | 0.124 | 0.063 | 0.168 |       | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 19. Davis Strait            | 0.189 | 0.178 | 0.180 | 0.188 | 0.200 | 0.187 | 0.179 | 0.178 | 0.175 | 0.173 | 0.173 | 0.177 | 0.233 | 0.177 | 0.187 | 0.178 | 0.239 | 0.174 |       | 0.000 | 0.000 | 0.000 | 0.000 |
| 20. Akureyri, Iceland       | 0.141 | 0.126 | 0.132 | 0.135 | 0.168 | 0.164 | 0.152 | 0.153 | 0.153 | 0.146 | 0.152 | 0.151 | 0.214 | 0.152 | 0.158 | 0.109 | 0.170 | 0.042 | 0.184 |       | 0.000 | 0.000 | 0.000 |
| 21. Barents Sea, Norway     | 0.189 | 0.170 | 0.175 | 0.182 | 0.173 | 0.165 | 0.158 | 0.168 | 0.172 | 0.156 | 0.173 | 0.162 | 0.238 | 0.163 | 0.160 | 0.095 | 0.184 | 0.013 | 0.199 | 0.041 |       | 0.000 | 0.000 |
| 22. Baltic Sea              | 0.172 | 0.171 | 0.175 | 0.177 | 0.211 | 0.200 | 0.185 | 0.196 | 0.196 | 0.189 | 0.194 | 0.195 | 0.261 | 0.195 | 0.200 | 0.166 | 0.227 | 0.097 | 0.231 | 0.067 | 0.103 |       | 0.000 |
| 23. Galway Bay, Ireland     | 0.146 | 0.141 | 0.145 | 0.145 | 0.211 | 0.202 | 0.189 | 0.190 | 0.191 | 0.183 | 0.188 | 0.189 | 0.252 | 0.192 | 0.200 | 0.162 | 0.218 | 0.097 | 0.237 | 0.029 | 0.097 | 0.088 |       |

|                             | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 19    | 20    | 21    | 22    | 23    |
|-----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1. Cox's Ledge              |       | 0.016 | 0.001 | 0.015 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2. Georges Bank (A)         | 0.004 |       | 0.602 | 0.849 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 3. Georges Bank (B)         | 0.005 | 0.000 |       | 0.374 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 4. Cape Sable (NS)          | 0.004 | 0.000 | 0.000 |       | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 5. Gulf of St. Lawrence (A) | 0.015 | 0.010 | 0.012 | 0.012 |       | 0.255 | 0.282 | 0.024 | 0.114 | 0.097 | 0.005 | 0.076 | 0.000 | 0.147 | 0.301 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 6. Gulf of St. Lawrence (B) | 0.016 | 0.012 | 0.014 | 0.014 | 0.001 |       | 0.437 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.100 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 7. Gulf of St. Lawrence (C) | 0.015 | 0.012 | 0.013 | 0.014 | 0.002 | 0.000 |       | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.016 | 0.026 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 8. St. Mary's Bay (NL)      | 0.012 | 0.005 | 0.007 | 0.007 | 0.004 | 0.005 | 0.006 |       | 0.366 | 0.921 | 0.162 | 0.285 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 9. Holyrood Pond (NL)       | 0.014 | 0.007 | 0.007 | 0.009 | 0.004 | 0.007 | 0.008 | 0.001 |       | 0.599 | 0.631 | 0.454 | 0.000 | 0.012 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 10. Bay Bulls (NL)          | 0.014 | 0.005 | 0.008 | 0.007 | 0.003 | 0.005 | 0.005 | 0.000 | 0.000 |       | 0.524 | 0.176 | 0.000 | 0.006 | 0.032 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 11. Smith Sound (NL)        | 0.014 | 0.006 | 0.007 | 0.007 | 0.005 | 0.009 | 0.010 | 0.001 | 0.000 | 0.000 |       | 0.376 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 12. Smith Sound (NL)        | 0.013 | 0.007 | 0.006 | 0.008 | 0.003 | 0.008 | 0.007 | 0.001 | 0.000 | 0.001 | 0.000 |       | 0.000 | 0.000 | 0.055 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 13. Gilbert Bay (NL)        | 0.069 | 0.064 | 0.068 | 0.064 | 0.068 | 0.066 | 0.067 | 0.063 | 0.059 | 0.057 | 0.058 | 0.061 |       | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 14. Newfoundland Shelf (A)  | 0.012 | 0.012 | 0.013 | 0.014 | 0.002 | 0.010 | 0.007 | 0.007 | 0.006 | 0.005 | 0.007 | 0.006 | 0.065 |       | 0.711 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 15. Newfoundland Shelf (B)  | 0.015 | 0.012 | 0.014 | 0.015 | 0.001 | 0.002 | 0.006 | 0.007 | 0.008 | 0.003 | 0.010 | 0.003 | 0.072 | 0.000 |       | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 16. Flemish Cap             | 0.039 | 0.034 | 0.037 | 0.037 | 0.027 | 0.031 | 0.027 | 0.036 | 0.033 | 0.027 | 0.035 | 0.031 | 0.096 | 0.024 | 0.021 |       | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 17. Ogac Lake               | 0.128 | 0.122 | 0.124 | 0.129 | 0.129 | 0.128 | 0.123 | 0.121 | 0.121 | 0.122 | 0.125 | 0.122 | 0.182 | 0.127 | 0.132 | 0.134 |       | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 18. Tariujarusiq Lake       | 0.103 | 0.101 | 0.104 | 0.107 | 0.109 | 0.107 | 0.099 | 0.111 | 0.110 | 0.104 | 0.112 | 0.105 | 0.172 | 0.095 | 0.100 | 0.052 | 0.150 |       | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 19. Davis Strait            | 0.161 | 0.161 | 0.160 | 0.163 | 0.186 | 0.173 | 0.169 | 0.170 | 0.167 | 0.165 | 0.165 | 0.168 | 0.224 | 0.166 | 0.174 | 0.165 | 0.239 | 0.160 |       | 0.000 | 0.000 | 0.000 | 0.000 |
| 20. Akureyri, Iceland       | 0.108 | 0.103 | 0.105 | 0.108 | 0.127 | 0.124 | 0.115 | 0.119 | 0.118 | 0.114 | 0.118 | 0.115 | 0.178 | 0.112 | 0.120 | 0.075 | 0.155 | 0.015 | 0.166 |       | 0.000 | 0.000 | 0.000 |
| 21. Barents Sea, Norway     | 0.122 | 0.118 | 0.119 | 0.124 | 0.132 | 0.127 | 0.118 | 0.130 | 0.128 | 0.122 | 0.129 | 0.122 | 0.191 | 0.120 | 0.123 | 0.073 | 0.159 | 0.007 | 0.176 | 0.014 |       | 0.000 | 0.000 |
| 22. Baltic Sea              | 0.143 | 0.148 | 0.148 | 0.152 | 0.172 | 0.162 | 0.150 | 0.161 | 0.160 | 0.157 | 0.158 | 0.158 | 0.222 | 0.155 | 0.163 | 0.131 | 0.208 | 0.071 | 0.209 | 0.063 | 0.071 |       | 0.000 |
| 23. Galway Bay, Ireland     | 0.113 | 0.110 | 0.111 | 0.116 | 0.140 | 0.135 | 0.126 | 0.131 | 0.130 | 0.126 | 0.130 | 0.128 | 0.189 | 0.123 | 0.134 | 0.092 | 0.172 | 0.030 | 0.187 | 0.014 | 0.028 | 0.069 |       |

### 73 Table S4. Results of BAYESCAN analysis with all samples

| Locus         | log10(PO) | F <sub>ST</sub> |
|---------------|-----------|-----------------|
| cgpGmo_S1553a | 1000      | 0.57488         |
| cgpGmo_S1830  | 1000      | 0.55475         |
| cgpGmo_S814a  | 1000      | 0.5531          |
| cgpGmo_S152   | 1000      | 0.55272         |
| cgpGmo_S1089  | 1000      | 0.54629         |
| cgpGmo_S1039a | 1000      | 0.54412         |
| cgpGmo_S1183  | 1000      | 0.54405         |
| cgpGmo_S2158  | 1000      | 0.54276         |
| cgpGmo_S268   | 1000      | 0.53285         |
| cgpGmo_S1039b | 1000      | 0.53192         |
| cgpGmo_S419   | 1000      | 0.52775         |
| cgpGmo_S920   | 1000      | 0.52774         |
| cgpGmo_S1810  | 1000      | 0.52415         |
| cgpGmo_S1101a | 1000      | 0.51978         |
| cgpGmo_S1068  | 1000      | 0.51305         |
| cgpGmo_S1986  | 1000      | 0.49707         |
| cgpGmo_S674   | 1000      | 0.48988         |
| cgpGmo_S1644  | 1000      | 0.48592         |
| cgpGmo_S1497  | 1000      | 0.46449         |
| cgpGmo_S1166  | 1000      | 0.46404         |
| cgpGmo_S1874  | 1000      | 0.46253         |
| cgpGmo_S1955  | 1000      | 0.45884         |
| cgpGmo_S1205  | 1000      | 0.44506         |
| cgpGmo_S2095  | 1000      | 0.42932         |
| cgpGmo_S180b  | 1000      | 0.41075         |
| cgpGmo_S1200  | 1000      | 0.40829         |
| cgpGmo_S1867  | 1000      | 0.40139         |
| cgpGmo_S1643  | 1000      | 0.3992          |
| cgpGmo_S822a  | 1000      | 0.39912         |
| cgpGmo_S1737  | 1000      | 0.39826         |
| cgpGmo_S917   | 1000      | 0.39212         |
| cgpGmo_S2019  | 1000      | 0.38091         |
| cgpGmo_S1026  | 1000      | 0.37877         |
| cgpGmo_S816a  | 1000      | 0.3702          |
| cgpGmo_S1751  | 1000      | 0.36801         |
| cgpGmo_S493   | 1000      | 0.36585         |
| cgpGmo_S875b  | 1000      | 0.36468         |
| cgpGmo_S876   | 1000      | 0.363           |

74 included. Outliers identified with a FDR of 1%.

| cgpGmo_S1853  | 1000 | 0.35392 |
|---------------|------|---------|
| cgpGmo_S57    | 1000 | 0.35281 |
| cgpGmo_S405a  | 1000 | 0.35205 |
| cgpGmo_S182   | 1000 | 0.34884 |
| cgpGmo_S2277  | 1000 | 0.3418  |
| cgpGmo_S2122  | 1000 | 0.34124 |
| cgpGmo_S2104  | 1000 | 0.33172 |
| cgpGmo_S852   | 1000 | 0.33129 |
| cgpGmo_S1962  | 1000 | 0.32491 |
| cgpGmo_S2082  | 1000 | 0.31988 |
| cgpGmo_S536   | 1000 | 0.31271 |
| cgpGmo_S184   | 1000 | 0.31264 |
| cgpGmo_S985   | 1000 | 0.31228 |
| cgpGmo_S116   | 1000 | 0.30377 |
| cgpGmo_S510   | 1000 | 0.30215 |
| cgpGmo_S1456  | 1000 | 0.29915 |
| cgpGmo_S1543  | 1000 | 0.29901 |
| cgpGmo_S1062  | 1000 | 0.29897 |
| cgpGmo_S866   | 1000 | 0.29728 |
| cgpGmo_S1467  | 1000 | 0.29718 |
| cgpGmo_S1167  | 1000 | 0.29703 |
| cgpGmo_S2186  | 1000 | 0.29409 |
| cgpGmo_S603   | 1000 | 0.29321 |
| cgpGmo_S755   | 1000 | 0.29195 |
| cgpGmo_S1258a | 1000 | 0.29189 |
| cgpGmo_S2101  | 1000 | 0.29127 |
| cgpGmo_S352   | 1000 | 0.28934 |
| cgpGmo_S1046  | 1000 | 0.28881 |
| cgpGmo_S975b  | 1000 | 0.28862 |
| cgpGmo_S1703  | 1000 | 0.28772 |
| cgpGmo_S174   | 1000 | 0.28534 |
| cgpGmo_S1842  | 1000 | 0.28187 |
| cgpGmo_S951b  | 1000 | 0.28004 |
| cgpGmo_S248a  | 1000 | 0.27993 |
| cgpGmo_S292b  | 1000 | 0.27971 |
| cgpGmo_S2287  | 1000 | 0.27859 |
| cgpGmo_S1905  | 1000 | 0.27704 |
| cgpGm0_5183   | 1000 | 0.27484 |
| cgpGmo_S1032  | 1000 | 0.27348 |
| cgpGmo_S1242  | 1000 | 0.27289 |
| cgpGmo_S584   | 1000 | 0.2/116 |
| cgpGm0_\$1959 | 1000 | 0.26/35 |
| cgpGmo_S938   | 1000 | 0.26733 |

| cgpGmo_S1945  | 1000   | 0.2626   |
|---------------|--------|----------|
| cgpGmo_S986   | 1000   | 0.26239  |
| cgpGmo_S1157  | 1000   | 0.26214  |
| cgpGmo_S407   | 1000   | 0.25994  |
| cgpGmo_S94    | 1000   | 0.25929  |
| cgpGmo_S973   | 1000   | 0.25907  |
| cgpGmo_S1209  | 1000   | 0.25796  |
| cgpGmo_S1009  | 1000   | 0.25637  |
| cgpGmo_S1111  | 1000   | 0.25483  |
| cgpGmo_S636   | 1000   | 0.25432  |
| cgpGmo_S1095  | 1000   | 0.2538   |
| cgpGmo_S2015  | 1000   | 0.25273  |
| cgpGmo_S1692  | 1000   | 0.25065  |
| cgpGmo_S1938  | 1000   | 0.24988  |
| cgpGmo_S342   | 1000   | 0.24787  |
| cgpGmo_S1022  | 1000   | 0.2467   |
| cgpGmo_S1712  | 1000   | 0.24611  |
| cgpGmo_S49    | 1000   | 0.24276  |
| cgpGmo_S1988  | 1000   | 0.24258  |
| cgpGmo_S616   | 1000   | 0.2416   |
| cgpGmo_S1896  | 1000   | 0.24026  |
| cgpGmo_S1788  | 1000   | 0.23863  |
| cgpGmo_S693   | 1000   | 0.23692  |
| cgpGmo_S1474  | 1000   | 0.23442  |
| cgpGmo_S727   | 1000   | 0.23412  |
| cgpGmo_S390b  | 1000   | 0.23158  |
| cgpGmo_S143   | 1000   | 0.22442  |
| cgpGmo_S556   | 3.6988 | 0.26032  |
| cgpGmo_S888   | 3.6988 | 0.25002  |
| cgpGmo_S29    | 3.6988 | 0.24     |
| cgpGmo_S2153  | 3.6988 | 0.23709  |
| cgpGmo_S586   | 3.6988 | 0.23598  |
| cgpGmo_S195   | 3.6988 | 0.23456  |
| cgpGmo_S1538b | 3.6988 | 0.22975  |
| cgpGmo_S1294  | 3.6988 | 0.22639  |
| cgpGmo_S430a  | 3.3977 | 0.27325  |
| cgpGmo_S2126  | 3.3977 | 0.23951  |
| cgpGmo_S207   | 3.3977 | 0.23589  |
| cgpGmo_S688   | 3.2215 | 0.27558  |
| cgpGmo_S68    | 3.2215 | 0.23894  |
| cgpGmo_S1098  | 3.2215 | 0.23304  |
| cgpGmo_S263   | 3.2215 | 0.047243 |
| cgpGmo_S93    | 3.2215 | 0.046124 |
|               |        |          |

| cgpGmo_S2200  | 3.0965 | 0.25544  |
|---------------|--------|----------|
| cgpGmo_S1899  | 3.0965 | 0.22037  |
| cgpGmo_S2242  | 3.0965 | 0.2156   |
| cgpGmo_S1105  | 3.0965 | 0.042351 |
| cgpGmo_S741   | 2.9995 | 0.30231  |
| cgpGmo_S759   | 2.9995 | 0.23394  |
| cgpGmo_S1706  | 2.9995 | 0.23183  |
| cgpGmo_S196   | 2.9995 | 0.22912  |
| cgpGmo_S1733  | 2.9995 | 0.22169  |
| cgpGmo_S873   | 2.9202 | 0.24186  |
| cgpGmo_S687   | 2.8532 | 0.047513 |
| cgpGmo_S597   | 2.7439 | 0.051932 |
| cgpGmo_S1483  | 2.698  | 0.051868 |
| cgpGmo_S930   | 2.6187 | 0.22971  |
| cgpGmo_S1011a | 2.5838 | 0.23957  |
| cgpGmo_S2171  | 2.5838 | 0.051032 |
| cgpGmo_S283   | 2.5515 | 0.24983  |
| cgpGmo_S474   | 2.5515 | 0.24379  |
| cgpGmo_S1034  | 2.5515 | 0.23093  |
| cgpGmo_S1202  | 2.5515 | 0.21897  |
| cgpGmo_S1321  | 2.5215 | 0.24629  |
| cgpGmo_S435   | 2.5215 | 0.23921  |
| cgpGmo_S360   | 2.5215 | 0.2276   |
| cgpGmo_S1906  | 2.4934 | 0.22691  |
| cgpGmo_S1127  | 2.4934 | 0.22179  |
| cgpGmo_S1721  | 2.4934 | 0.050003 |
| cgpGmo_S1999  | 2.467  | 0.23388  |
| cgpGmo_S1850  | 2.467  | 0.054134 |
| cgpGmo_S282   | 2.4185 | 0.22871  |
| cgpGmo_S1904  | 2.4185 | 0.21467  |
| cgpGmo_S1435  | 2.3961 | 0.22736  |
| cgpGmo_S793a  | 2.3961 | 0.050755 |
| cgpGmo_S2209  | 2.3352 | 0.056262 |
| cgpGmo_S1291  | 2.3166 | 0.24621  |
| cgpGmo_S2288  | 2.3166 | 0.23166  |
| cgpGmo_S982a  | 2.2988 | 0.26188  |
| cgpGmo_S444   | 2.2988 | 0.23749  |
| cgpGmo_S334   | 2.2816 | 0.24931  |
| cgpGmo_S1279  | 2.234  | 0.051598 |
| cgpGmo_S980   | 2.2191 | 0.051908 |
| cgpGmo_S1801  | 2.2048 | 0.23158  |
| cgpGmo_S594   | 2.2048 | 0.053016 |
| cgpGmo_S1868  | 2.1909 | 0.2493   |
|               |        |          |

|    | cgpGmo_S1646  | 2.1909 | 0.053529 |
|----|---------------|--------|----------|
|    | cgpGmo_S1255b | 2.1775 | 0.23062  |
|    | cgpGmo_S291   | 2.1644 | 0.2441   |
| 75 |               |        |          |



Figure S1. Euclidean distance among population average PCoA values of SNPs from range-wide

- samples of Atlantic cod using (A) all SNPs and (B) only neutral SNPs. See Figure 5 for PCoA
- 81 and groups present.

Euclidean Distance