Supplemental Material to:

Robert Lowe, Carolina Gemma, Huriya Beyan, Mohammed I. Hawa, Alex Bazeos, R. David Leslie, Alexandre Montpetit, Vardhman K. Rakyan and Sreeram V. Ramagopalan

Buccals are likely to be a more informative surrogate tissue than blood for epigenome-wide association studies

Epigenetics 2013; 8(4) http://dx.doi.org/10.4161/epi.24362

http://www.landesbioscience.com/journals/epigenetics/ article/24362/

Table S1: Sample statistics for buccal BS-Seq data

BS-Seq mapping

All BS-Seq samples were initially QC by FastQC

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and were then mapped using BiFast (https://bitbucket.org/xboxrob/bifast) with parameters –n 1 and –l 50. For blood and buccal data a large percentage of the reverse end of

the paired end reads mapped poorly and hence those that did not map were remapped using the forward end in single end mode. Paired end reads were filtered for clonality by assigning reads as clonal if the forward and reverse read mapped to exactly the same location. A read from all the clonal reads at each location was taken using random sampling providing it passed a minimum mapping quality of 15. For single end reads, a clonal read was defined by those reads that mapped to the same genomic location. Bisulphite conversion rates were calculated by measuring the conversion of cytosines in a non-CpG context (Buccal 98.1% Blood 99.1%; **Table S2**)

Table S2: Pooled statistics for blood and buccal BS-Seq data.

	Number of Sequences	Number mapped Paired End	Paired end after filtering	Number Mapped Single End	Single End after filtering	Cove rage	CpG (%)	CHG (%)	СНН (%)
Buccal	6283213773	2174291340	516667527	1552616328	330217907	43	71.1	0.7	1.2
Blood	793730071	302431954	280560367	300859288	276523228	36	70.9	0.5	0.4

Sample	GEO ID
CD14+ 1	ТВС
CD4+ 1	ТВС
CD14+ 2	TBC
CD4+ 2	ТВС
CD14+ 3	TBC
CD4+ 3	ТВС
CD14+ 4	TBC
CD4+ 4	ТВС
CD14+ 5	TBC
CD4+ 5	ТВС
CD14+ 6	TBC
CD4+ 6	TBC
CD14+ 7	TBC
CD4+ 7	ТВС
CD14+8	TBC
CD4+ 8	ТВС
CD14+9	TBC
CD4+ 9	ТВС
CD14+ 10	TBC
CD4+ 10	ТВС
CD14+ 11	TBC
CD4+ 11	ТВС
CD14+ 12	TBC
CD4+ 12	ТВС
CD14+ 13	TBC
CD14+ 14	ТВС
CD14+ 15	TBC
CD14+ 16	ТВС
CD14+ 17	TBC
CD14+ 18	ТВС
CD14+ 19	TBC
CD14+ 20	ТВС
CD14+ 21	TBC
Buccal 1	ТВС
Buccal 2	TBC
Buccal 3	ТВС
CD34+1	ТВС
CD34-1	ТВС
CD34+ 2	ТВС
CD34- 2	ТВС
Placenta 1	TBC
Placenta 2	ТВС
Pancreas 1	ТВС
Pancreas 2	ТВС

Table S3:	GEO IDs	for samp	<u>les a</u> nalysed

Sperm 1	TBC	
Sperm 2	ТВС	

Table S4: Table with the TP and 1-FP rate for various different methylation cut-offs and region size cut-off. Highlighted in bold is the maximum harmonic mean found. tDMRs were called using a Cochran-Mantel-Haenszel test (p-value<0.01) but it was necessary to filter these regions for further analysis. Therefore we investigated the effect of varying both region size and methylation difference cut-off on validation rates in sites also contained on 450K array. Here TP rate is defined as the number of regions overlapping probes called as a tDMP on the 450K array divided by the total number of probes called as tDMPs and the FP rate is defined as the number of regions called as tDMRs that overlapped with a 450K probe that were not called as a tDMP divided by the total number of tDMRs that overlapped with the 450K. tDMPs were obtained using dmpFinder in minfi. Supplementary Table 4 shows that a methylation difference cut-off of 30% and a minimum window size of 50bp (highlighted in bold) produced the highest harmonic mean of TP rate and 1-FP rate. Showing that over 80% of tDMPs were found and over 70% of tDMRs called were validated. A 50% methylation difference and 200bp window was chosen for main analysis as this allowed for a very low FP rate and hence our so-called tDMRs have a high validation rate.

Methylation Difference	Minimum Window Size	ТР	1-FP	Harmonic Mean
0	0	0.942621101	0.494329042	0.648547186
0	50	0.939009526	0.500980353	0.653373098
0	100	0.932463546	0.505735189	0.655792021
0	150	0.924156923	0.509258818	0.656662333
0	200	0.91449596	0.512433022	0.656820254
0	300	0.891111011	0.517061645	0.654407431
0.1	0	0.940273577	0.498094928	0.651217679
0.1	50	0.936662002	0.504363052	0.655668969
0.1	100	0.930116022	0.509109294	0.65803555
0.1	150	0.921809399	0.512589065	0.658825884
0.1	200	0.912148436	0.515750564	0.658927655
0.1	300	0.888808632	0.520183074	0.65627527
0.2	0	0.91440567	0.563256545	0.697107868
0.2	50	0.910794095	0.569612225	0.700887917
0.2	100	0.904473839	0.57359916	0.702002451
0.2	150	0.896573518	0.575888944	0.701310614
0.2	200	0.887318857	0.578030621	0.70003433
0.2	300	0.865423683	0.58096206	0.695220245
0.3	0	0.81003115	0.687086669	0.743510761
0.3	50	0.8070516	0.694379071	0.746487668

0.2	100	0 201724527	0 607/20060	0 745054566
0.3	150	0.801724327	0.097436906	0.743934300
0.3	200	0.794997908	0.098921837	0.743870303
0.3	200	0.78730333	0.700089098	0.74130432
0.5	500	0.708904558	0.705154154	0.75454994
0.4	E0	0.603952012	0.790525675	0.065952590
0.4	100	0.005655550	0.797827448	0.067419975
0.4	100	0.000095228	0.800722739	0.080433797
0.4	150	0.595729312	0.801179232	0.083340029
0.4	200	0.590176516	0.802595416	0.680187409
0.4	300	0.578393752	0.803920997	0.6/2/59//8
0.5	0	0.302469414	0.860283026	0.447574727
0.5	50	0.301115074	0.868922086	0.447243125
0.5	100	0.299354431	0.8/2144/64	0.445/20152
0.5	150	0.296781184	0.872635845	0.442924795
0.5	200	0.293259898	0.8/3//2364	0.439135065
0.5	300	0.286849352	0.874882703	0.43204375
0.6	0	0.058958963	0.875216638	0.11047573
0.6	50	0.058146359	0.898912058	0.109227321
0.6	100	0.05728861	0.908201305	0.10777863
0.6	150	0.055889125	0.908656145	0.105301427
0.6	200	0.054805652	0.91182266	0.10339659
0.6	300	0.052683852	0.915376677	0.099633376
0.7	0	0.00433389	0.711627907	0.008615312
0.7	50	0.004017877	0.832335329	0.00799715
0.7	100	0.00365672	0.857142857	0.007282372
0.7	150	0.003340707	0.854961832	0.006655408
0.7	200	0.003024694	0.881355932	0.006028699
0.7	300	0.002663537	0.911764706	0.005311557
0.8	0	0.000316013	0.319148936	0.0006314
0.8	50	0.000225723	0.555555556	0.000451264
0.8	100	0.000180579	0.642857143	0.000361056
0.8	150	0.000180579	0.666666667	0.00036106
0.8	200	0.000180579	0.727272727	0.000361068
0.8	300	0.000180579	1	0.000361092
0.9	0	0	0.208333333	0
0.9	50	0	0.5	0
0.9	100	0	1	0
0.9	150	0	1	0
0.9	200	0	1	0
0.9	300	0	1	0
1	0	0	0.090909091	0

Figure S1: Analysis of varying the allowed overlap between BS-Seq tDMRs and 450K or RRBS-Seq data. As we increase the overlap the validation rate falls suggesting we are not capturing the true methylation state.

Location of External data used for paper excluding the >1000 450K samples that can be downloaded using Marmal-aid with the script supplied

Data	Location
Name	
UCSC	http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/kno
Genes	wnGene.txt.gz
RegFeats	http://ftp.ensembl.org/RegulatoryFeatures_MultiCell.gff.gz
H3K27me	http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM613877
3 PRMC	
H3K9me3 PBMC	http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM613878
H3K9ac PBMC	http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM613879

H3K36me 3 PBMC	http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM613880
H3K4me1 PBMC	http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM613884
miRNA	http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/wgR NA.txt.gz
Long non- coding RNA	ftp://ftp.sanger.ac.uk/pub/gencode/release_13/gencode.v13.long_ noncoding_RNAs.gtf.gz
mRNA	http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/all_ mrna.txt.gz
Dnase Clustered	http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/w gEncodeRegDnaseClustered/wgEncodeRegDnaseClustered.bed.gz
Transcrip tion Factor Chip	http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/w gEncodeRegTfbsClustered/wgEncodeRegTfbsClustered.bed.gz
CpG Islands	http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/cpgI slandExt.txt.gz
H3K27ac ES	http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM605307
H3K36me3 ES	http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM605310
H3K27me3 ES	http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM667622
H3K4me1 ES	http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM667626
H3K4me2 ES	http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM605314
H3K4me3 ES	http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM605316
H2AZ ES	http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM807391
Ctcf ES	http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEnc odeOpenChromChip/wgEncodeOpenChromChipH1hescCtcfRawDataR ep1.fastq.gz
Pol2 ES	http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEnc odeOpenChromChip/wgEncodeOpenChromChipH1hescPol2RawDataR ep1.fastq.gz
RRBS-Seq Skeletal Muscle	http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/w gEncodeHaibMethylRrbs/wgEncodeHaibMethylRrbsBcskeletalmus cle0111002BiochainSitesRep1.bed.gz
RRBS-Seq Islets	http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/w gEncodeHaibMethylRrbs/wgEncodeHaibMethylRrbsPanisletsSites Rep1.bed.gz
RRBS-Seq Brain	http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/w gEncodeHaibMethylRrbs/wgEncodeHaibMethylRrbsBcbrainh1105 8nBiochainSitesRep1.bed.gz
RRBS-Seq Kidney	http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/w gEncodeHaibMethylRrbs/wgEncodeHaibMethylRrbsBckidney0111

	002BiochainSitesRep1.bed.gz
RRBS-Seq	http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/w
Liver	gEncodeHaibMethylRrbs/wgEncodeHaibMethylRrbsBcliver01110
	02BiochainSitesRep1.bed.gz
DNasel	http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26328