Supporting Information

Mg²⁺ binds to the surface of thymidylate synthase and affects hydride transfer at the

interior active site

Zhen Wang,^{1,‡} Paul J. Sapienza,² Thelma Abeysinghe,¹ Calvin Luzum,^{1,†} Andrew L. Lee,^{2,3} Janet S. Finer-Moore,⁴ Robert M. Stroud,⁴ and Amnon Kohen^{1,*}

 ¹ Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
² Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
³ Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

⁴ Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, USA

* Author to whom correspondences should be addressed. E-mail: <u>amnon-kohen@uiowa.edu</u> Phone #: 319-335-0234

[‡] This author's present address: Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461

[†] This author's present address: Ensign, United States Navy, Goose Creek, SC 29445

Supplementary Figures

Figure S1. The initial velocity of ecTSase-catalyzed reaction *vs*. concentration of dUMP, in the absence (red) and presence (blue) of 50 mM MgCl₂.

Figure S2. The initial velocity of TSase-catalyzed reaction *vs*. concentration of $6R^{-x}H^{-}CH_{2}H_{4}fol$ (^xH = H or D), in the presence of 50 mM MgCl₂ at 25 °C.

Figure S3. T_1 , T_2 , and ${}^{1}H{}^{-15}N$ NOE for ecTSase-FdUMP-CH₂H₄Fol (A) without and (B) with MgCl₂.¹ Data at 500 and 600 MHz are in black and red, respectively.

Figure S4. Model-free ¹⁵N-¹H order parameters for the ecTSase-FdUMP-CH₂H₄fol complex (A) without and (B) with MgCl₂. The top plot in each panel shows the model that best fits the raw relaxation data.¹ Models are: 1) S^2 only, 2) S^2 , t_e, 3) S^2 , R_{ex} , 4) S^2 , t_e, R_{ex} , 5) S_f^2 , S^2 , $t_e = t_s$.²

Figure S5. Mg^{2+} (green) binds to the surface of the ternary complex of ecTSase with dUMP and a di-Glu antifolate inhibitor BGC945 (cyan).³ All other molecules are colored in the same way as Figure 5 in the main text. Mg^{2+} mediates an H-bond network between the first Glu of the di-Glu moiety of the inhibitor and the backbone carboxylates and side chains (*e.g.* T78 and E82) of the loop, which resembles the interactions in the ecTSase-dUMP-CB3717 complex (Figure 5).

Supplementary Tables

Table S1. Steady state kinetic parameters of ecTSase in the absence (w/o, red) and presence (w/, blue) of 50 mM MgCl₂.

w/ Mg ²⁺	5 °C	15 °C	25 °C	35 °C
w/o Mg ²⁺	5 °C	20 °C	30 °C	40 °C
$k_{cat}(\mathbf{s}^{-1})$	5.1 ± 0.3	6.5 ± 0.2	8.7 ± 0.2	10.3 ± 0.3
	0.73 ± 0.06	1.02 ± 0.03	1.32 ± 0.02	1.62 ± 0.06
$K_{M}^{CH_4H_4fol}$ (μ M)	8 ± 1	11 ± 1	15 ± 1	19 ± 2
IM Y	24 ± 5	20 ± 2	14 ± 1	24 ± 3
$K_{I}^{CH_{4}H_{4}fol}$ (mM)	0.6 ± 0.1	0.52 ± 0.05	0.76 ± 0.07	1.5 ± 0.2
1	0.43 ± 0.05	0.53 ± 0.02	1.09 ± 0.07	1.5 ± 0.3

Temper- ature °C	Observed KIE $^{T}(k_{cat}/K_{M})_{L}$		Intrinsic KIE on the hydride transfer ^{<i>a</i>}			C
	H/T	D/T	H/T	H/D	D/T	C_{f}
5	2.59 ± 0.02	1.47 ± 0.02	7.5 ± 0.8	4.0 ± 0.3	1.83 ± 0.06	3.1 ± 0.5
15	3.51 ± 0.02	1.60 ± 0.02	7.6 ± 0.6	4.1 ± 0.2	1.83 ± 0.04	1.6 ± 0.2
25	4.14 ± 0.02	1.65 ± 0.01	7.2 ± 0.4	3.9 ± 0.2	1.81 ± 0.03	1.0 ± 0.1
35	3.91 ± 0.05	1.63 ± 0.03	7.4 ± 0.9	4.0 ± 0.4	1.82 ± 0.07	1.2 ± 0.3

Table S2. The observed KIE on k_{cat}/K_M , the intrinsic KIE on the hydride transfer, and C_f in the presence of 50 mM MgCl₂.

^{*a*} The intrinsic H/T KIE is numerically solved from Eq 8 in the main text, and the intrinsic H/D and D/T KIEs are calculated from the intrinsic H/T KIE using the Swain-Schaad relationship.⁴

Table S3 Data collection and refinement statistics from ref 3.

PDB ID	4ISK				
Data collection		Refinement			
X-ray source	ALS 8.3.1	Resolution (Å)	29.81-1.75		
X-ray wavelength	1.115869	R_{work}/R_{free} (%)	19.4/24.8		
(Å)					
Space group	P21	No. reflections	200717		
Cell dimensions		Completeness for range	97.8		
a, b, c (Å)	95.9,85.5,134.3	(%)			
α, β, γ (°)	(90, 109.4, 90)				
Resolution (Å)	30-1.75	r.m.s. deviations			
No. of unique	204820	Bond length (Å)	0.013		
reflections					
Rmerge (%)	7.0	Bond angles (°)	1.57		
I/σI	8.79	Ramachandran Plot (%)			
Completeness (%)	99.8	Favored regions	98.0		
Redundancy	2.98	Allowed regions	1.60		

References

- (1) Sapienza, P. J., Lee, A. L. *Biomol. NMR Assigm.* **2013**, Submitted.
- (2) Mandel, A. M., Akke, M., Palmer, A. G., 3rd J. Mol. Biol. 1995, 246, 144-163.
- (3) Tochowicz, A., Dalziel, S., Eidam, O., O'Connell 3rd, J. D., Griner, S., Finer-Moore, J. S., Stroud, R. M. *J Med. Chem.* **2013**, Submitted.
- (4) Swain, C. G., Stivers, E. C., Reuwer, J. F., Schaad, L. J. J. Am. Chem. Soc. 1958, 80, 5885-5893.