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SUPPLEMENTARY FIGURE 

 

Supplementary Figure S1| Additional apparatus details. 

(a) Photograph of the leg-tracker setup. 

(b) Absorption and emission wavelengths as in Figure 1e, with the optional croconium ball dye 

(see Supplementary Methods) included. 

(c) Chemical structure of the croconium dye. 
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(d) Motion of the ball around its axis of rotation (A) is described by a basis set of three compo-

nent rotational axes (i, j, k), and inferred from the ball’s motion at the tracking spots (red). 

(e) The appearance of the floating ball in infrared as illuminated by the tracking sensor lasers.  

(f) Wiring diagram allowing the Avago ADNS6090 tracking sensors to operate once extracted 

from their original application in computer mice, as well as communicate with the SPI hub. 

(g) A representative vector data trace before (red) and after (blue) clean up using a median filter 

and removal and interpolated replacement of rare erroneous readings. See Supplementary 

Methods. 

(h) Sphere motion is sufficiently sensitive to respond to single strides, as shown by time-

frequency analysis of an individual leg vector (left) and the pitch component of ball motion 

(right). Color indicates relative power. The ~9 and ~18Hz leg-motion modes drive corre-

sponding modes in the motion of the ball. 
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SUPPLEMENTARY METHODS 

 

 

Apparatus design details and use 

 

 Previous reports of Drosophila spherical treadmills used styrofoam, high-density poly-

ethylene, or polyurethane foam spheres [9, 10, 12, 28]. This was not an option for our setup be-

cause we needed an optically clear sphere for imaging the dye spots of the leg from below. At 

first we thought we would need a spherical treadmill that matched the inertial mass of the tiny 

fruit fly. This led us to try aerogel, a rigid, ultralight and translucent material produced through 

supercritical drying [29]. However, it was time-consuming and difficult to make uniform spheres 

of aerogel, the material absorbed infrared and was very hygroscopic.  

 Next, we tried clear, acrylic spheres (1/4’’, McMaster-Carr), which were much heavier 

than a fruit fly, but considerably more spherical than our in-house manufactured aerogel spheres. 

We were able to drastically reduce the mass of the sphere (down to <7mg) by spliting them in 

half, hollowing them out using Dremel rotary tools, and then glueing them back together. How-

ever, we found that the spheres were too light, and that the fly had trouble running because each 

stride would displace the sphere instead of spinning it. Therefore, matching the inertial mass of 

the sphere to the fly was not the correct approach and ultimately, we found the clear, acrylic 

spheres without modification yielded behaviors that, to our eyes, were the most naturalistic.  

 We introduced small, scattering surface imperfections on the spheres by lightly rolling 

them over 400 grit sandpaper to allow the infrared sensors to efficiently track motion. The more 

scuffed the sphere, the better it was tracked, but at the cost of poorer transmission of the fluores-
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cence from the leg dyes to the cameras below. Thus, we incrementally scuff a sphere and strike a 

balance between infrared tracking and fluorescence transmission.  

 Alternatively, the spheres can be coated in the near-infrared absorbing/reflecting croconi-

um dye (Piperdinium, 4-carboxy-1-[5-[3-[5-(4-carboxy-1-piperdinyl0-2-thienyl]-2-hydroxy-4,5-

dioxo-2-cyclopenten-1-ylidene]-2(5H)-thienylidene]-, inner salt) to make it visible to the sen-

sors. The croconium dye was prepared using the procedure reported [30]. However, all of the 

data presented in this work was collected using the sandpaper method.  

 The housing of the treadmill sphere bearing consisted of the rim of a 150µL Eppendorf 

tube. During trials, the ball was floated on air from a cylinder of compressed air (Airgas). The air 

was first bubbled through water to prevent static charge from accumulating, then passed through 

an adjustable flow regulator, and finally into a plenum to evenly distribute the flow into the air 

bearing. We used an airflow rate of approximately 440mL per minute. 

 Infrared sensors (Avago chip #ADNS-6090) for tracking the sphere are available in high-

performance gaming mice. The wiring diagram of the circuit that allows these sensors to operate 

once removed from their original circuit boards, as well as communicate with a Serial Peripheral 

Interface (SPI) hub (National Instruments) is shown in Supplementary Figure S1f. (See the sec-

tion below for details on transforming the four vectors from the two sensors into the three motion 

vectors of the sphere.) Measurement of angular displacement in the three components of rota-

tional motion of the ball was calibrated by manually turning a calibration sphere (rigidly attached 

to a long, stiff, wire handle) through π radians on the roll and yaw axes and π/2 radians on the 

pitch axis, numerous times and averaging the integrated sensor motion. 

 The dyes were excited by a HeNe laser (632.8 nm, Thorlabs) which passes through a 

beam expander to ensure the space surrounding the legs was fully illuminated. In preliminary 
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experiments, we determined that groups of agitated flies were attracted to red LED light sources 

centered at 625nm, but not the HeNe source. Since a sphere will act as a lens, a second sphere 

was positioned within the optics housing to re-collimate the light before reaching the cameras. In 

conjunction with a beam splitter, two Prosilica GigE cameras (Allied Vision Technologies) were 

used for imaging the dyed legs from through the spheres, and acquired images at 80Hz typically. 

Band-pass filters (Edmund Optics) were used to optimize each camera’s detection for either 

221ox (HQ650/20m band-pass filter, Chroma) or julox (HQ700/20m band-pass filter, Chroma). 

Additionally, a short-pass filter (NT49-829, Edmund Optics) was used to block stray light from 

both the infrared tracking sensors and potential two-photon sources.  

 For the optomotor feedback experiments we used a standard 15 inch LCD monitor to dis-

play alternating blue (RGB=0000FF, width=4.8cm) and black (RGB=000000, width=2.4cm) 

colored vertical bars. Optic flow consisted of these vertical bars translating out (10cm/s) from a 

line of expansion. The monitor was positioned six inches from the tethered fly. The optomotor 

feedback trial comprised the conditions: 20min in the dark, 20min closed-loop, 20min dark, 

20min open-loop, repeat from the beginning once. Closed-loop allowed the turns of the fly to 

control the position of the line of expansion for the translating vertical bars based on the detected 

turning-in-place (i) vector. Open-loop disabled the feedback control from the fly and allowed the 

point of origin for the diverging vertical bars to drift (0.5cm/s) to the point that the entire screen 

was filled with bars moving either left-to-right or right-to-left. During the 20min open-loop trial, 

the drift would switch direction every 5min. The 5 animals recorded in the optomotor experiment 

were different than the 8 animals recorded for day-to-day idiosyncrasy experiments, and the 5 

animals used to train the classifier, as well as several animals recorded for day-to-day analysis 

that yielded only one run of satisfactory data. 
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Transforming the tracking sensor data into motion vectors 

 

 The X, Y coordinates from the sensors, integrated over 10 frames in a sliding window 

fashion as a noise reducing measure, were transformed to generate the 3 motion vectors of the 

sphere as follows: 

 

• The axis of rotation of the ball A has components whose relative proportions are the propor-

tional extents to which the fly is running forward/backward, sidestepping, or turning in 

place (respectively, pitch, roll and yaw). Specifically, rotation around i indicates turning 

in place, j forward/backward walking, and k sidestepping. We need to determine a, b, c 

such that A={ai,bj,ck} - these are the relative proportions of each type of motion. 

• Data from the sensors comes as two vectors L and R each in its own coordinate system (ba-

sis): L={xL, yL,0}, R={xR, yR,0}. First, convert the basis of these vectors to the global ball 

basis (B={{i,0,0},{0,j,0},{0,0,k}}) using a change of basis matrix C derived from the po-

sitions of the sensors. Call the converted vectors LB and RB. These will always be latitude 

lines with respect to A. Therefore A is parallel to a vector which is perpendicular to both 

LB and RB. Therefore A is parallel to A'=LB X RB. 

◦ A'i is the % yaw 

◦ A'j is the % pitch 

◦ A'k is the % roll. 
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• From A, we don't know the speed at which the ball is turning. This is derived from the 

length of either L or R as a function of their distance from A. We calculate it based on 

whichever sensor is farther from A, as this will be a less noisy measurement. Assume, 

without loss of generality, that |L|>|R|, i.e. that L is farther from A. The angle between A 

and L is given by cos-1((A•L)/(|A||L|)). The surface speed of a sphere moving with speed 1 

at an angular distance θ from the axis of rotation is sin(θ), thus the speed of rotation of 

the ball (and the magnitude of the vector whose components are the fly's behavioral com-

ponents) is 

M = |L|/sin(cos-1((A•L)/(|A||L|))) 

• While LB X RB is mathematically parallel to A, when RB is nearly parallel to LB, A' will ap-

proach 0, and its orientation will become highly sensitive to noise in the measurement of 

L and R. This occurs when A lies in the plane of the bearing housing, i.e. perpendicular to 

i. To the extent that LB and RB are parallel, we want to use a different formula than their 

cross product. Since LB and RB are parallel, we can replace their information with their 

mean, and we can let "the extent to which they are parallel" be the cosine of the angle be-

tween LB and RB: 

β= cos(cos-1((LB•RB)/(|LB||RB|))) =(LB•RB)/(|LB||RB|) 

• This is the weighting factor given to the term of our final equation when LB and RB are par-

allel. The term itself is simply the cross product of i with the mean of LB and RB, which 

by assumption are both perpendicular to A. Thus, the noise-resistant ball-basis axis of ro-

tation is given by: 

A' = β*(LB+RB)/2 X {(|LB|+|RB|)/2, 0, 0} + (1-β)*LB X RB 
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Developing the k-nearest-neighbors classifier 

 

 We implemented feed-forward neural networks and support vector machines (SVM) as 

potential non-linear classifiers for our instrument data before settling on k-nearest neighbors 

analysis (KNN). Those alternative methods showed promise, but neural networks are hard to in-

terpret and have path-dependent performance variability. Compared to KNN, SVM required 

more computationally intensive optimization of two parameters (in the case of the most generally 

useful Gaussian radial bias kernel). Moreover, the performance of SVM was not obviously better 

than that of the simpler KNN. Importantly, we intend to present our technique to building the 

classifier as a general approach, and the intuitive underpinnings, computational simplicity, and 

successful performance of KNN were compelling. The classifier was built as follows. 

 A training set was built by manually scoring 4000 or 8000 video frames of a fly behaving 

on the ball while simultaneously recording the 15 raw data vectors. This was done independently 

by two investigators to assess the variability in manual scoring. Five different flies were scored.  

 Data were recorded as fast as possible during experiments, resulting in varying inter-

frame intervals, with an average recording rate of ~90Hz. Prior to any additional processing, raw 

data was linearly interpolated to a uniform rate of 100Hz. The videos acquired for training pur-

posed were recorded at 30Hz, and therefore the frames used in conjunction with the manual 

scores were selected for their correspondence with the time stamps of the video frames. Illumina-

tion of the HeNe laser was used as a trigger to synchronize the video and instrument data. 

 Raw data contained rare frames with erroneous leg-track positions. These typically arose 

when the dye spots moved out of the HeNe laser excitation, e.g. if they were occluded by the ab-



 

11 

domen. Any trial with more than ~1% error frames was discarded. Raw data for the KNN train-

ing, and all other experiments, was filtered to remove error positions as follows. A 3-frame me-

dian filter was applied to all raw data vectors eliminating single-frame errors. The first frames of 

errors persisting longer than a single frame were identified by their values deviating from adja-

cent frames by more than 5 standard deviations of the inter-frame differences. The final frames 

of these extended errors were identified as the next frame within 5 standard deviations of the 

value prior to the error, or within 1 standard deviation of the median position across all frames. 

Values thus flagged as erroneous were replaced with values interpolated linearly from flanking 

frames. This approach was conservative, but removed essentially all conspicuous errors (Fig. 

S1g).  

 To explore which higher-order features were required for sufficient KNN performance, 

we used cross-validation at the level of flies – i.e. setting aside all of one fly’s data, training the 

KNN classifier with the raw values and higher-order features from the remaining four flies from 

the training set. Correlation coefficient was used as the KNN metric. Performance was assessed 

using the withheld fly’s raw data and higher-order features. Data from different flies were made 

comparable by z-score normalization within the data from each fly (to eliminate any positioning 

differences between mountings), then concatenated and z-score normalized again (to assure that 

all training variables would contribute equally to the classifications). The data from the withheld 

fly was z-score normalized, and then re-normalized using the mean and standard deviation of 

concatenated training set data.  

 Performance of the KNN with respect to one set of manual scores was assessed using the 

unbalanced accuracy, i.e. the overall percent of classifications matching the manual score. Also 

evaluated for reference was a so-called “plausible accuracy” which tolerates errors in assignment 
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between behaviors that are only arbitrarily distinguishable (e.g. the precise distinction between 

standing still and making small postural adjustments is necessarily an arbitrary cutoff). Misclas-

sifications tolerated in this analysis include the above, postural adjustment with the locomotory 

behaviors, the locomotory behaviors with complex motion, leg1- and head-grooming, and leg3- 

and abdomen-grooming. We have observed that flies will groom both their hind-legs and abdo-

men in the same stroke, so this reflects biological overlap in addition to definitional continuity. 

The plausible accuracy between the manual scoring data sets was 96%, and between the KNN 

classifier scores and manual (JK) scores 91%. Manual (BD) scores were slightly more difficult 

for KNN to classify, yielding an 88% plausible accuracy.  

 Higher-order features characterizing local temporal dynamics in the data were calculated 

with a sliding window of +/-5frames. Other window sizes were evaluated and did not improve 

performance. Vector derivatives were calculated as the difference of values from frame t-1 to 

t+1. Local cross-correlations were calculated in a pair-wise fashion between all 15 raw values in 

a sliding window of +/-5frames. Vectors of higher-order features were padded with 0s as neces-

sary. The KNN k parameter was optimized to 16 using just the raw data, and re-optimized to 24 

once the best training set (raw data + derivatives + local standard deviations) was identified. 

KNN performance was quite robust to the choice of 4<k<100. Lastly we noticed that the model 

was prone to switch between behavioral types more frequently than the manual scorers. We ex-

plored two approaches to address this. First we implemented a sequential frame Bayesian hidden 

Markov Model with priors extracted from the training data set. This provided little improvement 

and thus was not kept. However, a simple low-pass filter that replaced each frame’s classification 

with the most abundant classification in a +/-5frame sliding window did improve performance, 

albeit slightly (5%). 
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 Raw data collected post-KNN-training was interpolated, filtered for errors, normalized, 

augmented with higher-order features, and low-pass filtered as above, with the exception that the 

training samples included data from all 5 training flies, i.e. none were withheld.  
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