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58 Predicting Tie Creation and Decay

that the sharp drop in the number of observed ties in the first week is actually due to
the bursty tie communication activity, which leads to the observation of almost half of
the ties observed at the beginning. Despite the differences in the measured number of
ties, we do not observe substantial change in the behavior, which in both cases can be
approximated by a linear function N(t) ⇥ bt with b ⇤ �0.006.
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Figure 4.4: Fraction of observed (black circles) and open (red squares) ties as a function of time
over a period of 86 weeks.

4.2.3 Tie prediction based on time-dependent features

From the data described in Appendix A, we consider the resulting phone communi-
cation network over a period of 19 months from February 2009 to August 2010. In a
way analogous to Chapter 3, we split the 19-months period into 3 subintervals [(Feb09-
Jul09), (Aug09-Feb10), (Mar10-Aug10)], use the window in the middle as prediction
time period and the intervals before and after as observation periods to assess whether
the ties actually exist from before and/or persist after T (see Fig. 4.5). One of the things
we have to face before to analyze the temporal dynamics of social relationships is re-
lated to the dynamicity and competition in telecommunication industry, which causes
a high rate of customers subscription and unsubscription. For the purpose of this study
we are not interested in a detailed understanding of this phenomenon. However, we
want to avoid the problem of inactivity/subscription/churn which could alter the ob-
served activity of a node/link. For this reason we only keep those nodes who at least
have one communication event in each subinterval.

As mentioned above, we are interested in determine whether each tie observed
within T is more or less likely to have formed within T and, at the same time, to persist
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SI Figure 1: (a) Rescaled inter-event time distribution for groups of edges with different average
inter-event time δtij . Each curve is rescaled by the value of δtij of the correspondent bin. (b) Weekly
persistence p(n) of ties observed in the first week of our database as a function of the number of
weeks n: while persistence drops to 70% after one month if ties are required to have activity at a
given week n, it is still around 70% for one year if we consider open ties at that week, i.e. ties which
where observed in the first week.

1 Entanglement between bursty activity and tie dynamics

As stressed in the main text, one of the most challenging problems in the study of the dynamics of
tie creation and removal is to identify whether a tie is actually a new/old connection. Although
in most social networks there are specific events for the formation of new "friends" (or followers)
or the corresponding "unfriending" events, due to the cheap cost of maintaing those connections
most of those ties are abandoned and thus activity between individuals is the only way to asses
the existence or not of that relationship.

However, human activity is bursty, meaning that there are large periods of inactivity followed
by bursts of activity [2]. This means that within a particular tie i↔ j the time between consecutive
communication events δtij is heavy-tailed distributed. In our database we find that this is indeed
the case and in line with [6, 7] we find that there is a universal law for the distribution of inter-
event times (see Fig. 1). In particular, we find that for a particular tie P (δtij) = P(δtij/δtij) where
P(x) is a heavy tailed universal function. Since bursty behavior seems to be universal in human
activity [2], it has a deep impact in the understanding of tie dynamics and translate in a ubiquitous
problem in the empirical observation of social networks: if the observation window is very short
we might miss most of the ties since there is no communication in that period of time. But on the
other hand, since the inter-event time distribution is heavy-tailed we might have to go to large
observation windows to recover most of the ties. For example in our database we find that the
average inter-event time is 〈δtij〉 = 14 days with a standard deviation σ = 18 days, which means
that the observation period must be larger than a 2-3 months only to observe (at least once) most
of the ties in the social network. In our case, Ω extends over 7 months and using the previous/next
6 months intervals we calculate that 3% ties did not show activity in Ω and then could have been
missed if only data within Ω was present.

Limited communication capacity unveils strategies for human interaction
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Although the impact of burstiness in the observation of ties is important, it becomes critical for
the problem of tie formation/decay since it is not only necessary to observe the tie but to asses its
termination or formation. Thus, we need to increase substantially the observation window to iden-
tify whether the link has been formed and or decayed in our database. Short observation windows
can lead to spurious effects: a tie that is present in one time window might (with large probability)
do not show activity in the next time window due to a large inter-event time and thus we might
incorrectly identify that event as decay of the relationship. This might be the origin of the large
(30-40%) decay in persistence observed in the literature [8, 9] (and reproduced in our database, see
Fig. 1(b)), since the observation windows were very short (1 month). The large probability of hav-
ing a inter-event time of one month in human communication leads to the erroneous impression
that 40% of the links are created/decayed in one month period and that the networks are highly
volatile, since correlation between the network structure at different observation windows is very
low.

To cure those problems in our paper we propose a different method to asses whether a tie
formed/decayed in the observation window Ω. The method is based on the observation of tie
activity in a time window before/after Ω: if tie activity is observed in the 6 months before Ω then
it is considered an old tie [cases (a) and (d) in Main Text Fig. 1]; on the other hand, if activity is
observed in the 6 months after Ω we will assume that the tie persists [cases (b) and (d) in Main
Text Fig. 1]. In any other case, we will consider that the tie is formed and/or decay in Ω [cases
(a), (b) and (c) in Main Text Fig. 1]. Of course, it is possible that even if there is no communication
before/after the observation window, the tie is still active after/before our database. This would
require that the tie has an inter-event time δtij bigger than 7 months, i.e. case (e) in Main Text Fig. 1.
However, in our database, only 3.5% of the links have such a long inter-event time which validates
the accuracy of our definition of tie decay/formation.

On the other hand in our study a tie is considered to be opened between its formation and
decay events (if they happen in Ω at all). This assumption is based on the idea that an interaction
which has been observed in the past and will be observed in the future might exist at a given
instant even if there is no communication by mobile phone between at that particular instant.
Furthermore, our observation window is short enough to neglect safely possible formation and
decays of the relationship within Ω. Our definition of relationship mitigates the excessive volatility
of the social network when tie is considered only when interaction is observed at a given instant.
For example, the persistence of open links is higher (70% in one year) than observed links (40% in
one year) in line with off-line studies [15]. It also resembles different situations in which, although
a strong relationships might exist off-line, very few calls are exchanged in time.

Finally, understanding this difference between open and observed relationships is crucial to
unveil the real dynamics of social networks because it can induce also spurious effects in the
observations: within a given observation window, the (revealed) aggregated connectivity ki(t)

seems to grow non-trivially as a function of time (see Main Text Fig. 2) within Ω. Actually, it could
even be fitted to a power law ki(t) ∼ tγ with γ ' 1/2 for small t. It is interesting to see that
the functional form and exponent do fit those found in models of network growth [14]. But it
is easy to see that this effect is (mostly) due the fact due the fact that different links have very
heterogeneous number of communication events wij and within a given tie events are very bursty.
Specifically, the apparent growth of ki(t) for short times is mainly due to the possibly large and
highly heterogeneous time to the first event event within ties.

Limited communication capacity unveils strategies for human interaction
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To understand that, suppose that a given tie is present before and after the observation window
Ω and that the distribution of inter-event times within that tie is given by P (δtij). Assuming that
the initial time of the observation window is random, the time to the first observation of the link
is given by the waiting time equation in renewal processes [13]

P (τij) =
1

δtij

∫ ∞
τij

P (δtij)dδtij (1)

Thus, depending on the properties of P (δtij) we could have a very large observation time (τij)
for the link. As shown in Fig. 1(a) the pdf for inter-event times depends mostly on the average
inter-event time δtij , i.e. P (δtij) = P(δtij/δtij) where P(x) is a universal function. Thus, for a
given δtij we could rewrite the previous expression as

P (τij |δtij) =
1

τij

∫ ∞
τij

P(δtij/δtij)dδtij (2)

However, ties are very heterogeneous in the sense that they have very different δtij . Or equiv-
alently, they have very different weights wij = T/δtij [12]. Suppose that Π(δtij) is the distribution
of average inter-event times across links and that each user chooses her tie activities from that
distribution. We assume also that no tie is form/destroy during the observation time. Then the
probability to observe one of her links at time τ is given by:

P (τ) =

∫
dδtijΠ(δtij)P (τ |δtij) (3)

Thus, the growing function of the observed connectivity as a function of time is given by the ccf of
P (τ).

ki(t) = ki(T )

∫ t

0

P (τ)dτ (4)

where ki(T ) is the total connectivity of node i in the observation window Ω. Note that since P(x)

and Π(δtij) are heavy tailed, then P (τ) is heavy tailed too and thus the ki(t) can show an apparent
non-trivial time dependence even if all links are open during Ω. Expression (4) shows that one
should be careful to consider the observed aggregate connectivity ki(t) as a proxy for social con-
nectivity at any time t, since it is profoundly affected by the bursty and heterogeneous activity of
human behavior encoded in P (τ). Note to mention the effect of tie formation/destruction which
is not included in (4).

Strikingly, an apparent ki(t) ∼ tγ growth can be observed even in the case in which both tie
activity and weights are severely bounded: if we assume that the distribution of inter-event times
is given by the exponential pdf P (δt|δt) = e−δt/δt/δt and also that the pdf for the average inter-
event time is an exponential Π(δt) = e−δt/a/a we get exactly from Eq. (4) that

ki(t) = ki(T )

{
1− 2

√
t

a
K1

(
2

√
t

a

)}
, 0 ≤ t ≤ T (5)

where K1(x) is the Modified Bessel Function of the second kind [11]. Thus, for a single user the
number of observed ties grows in a non trivial way as a function of time even for this homogeneous

Limited communication capacity unveils strategies for human interaction
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SI Figure 2: Apparent growth in the connectivity given by equation (4) as a function of time for
an exponential distributions of average inter-event time with a = 10 days (marked by the arrow).
Dashed line is the fit to a power-law growth for the initial growth (up to 5 days) that yields ki(t) ∼ tγ

with γ = 0.53 ± 0.02.

(both in the events and in the links properties) case, a behavior which extends further from t =

a, the average δt (see Fig. 2). This result for a single user based on the universal bursty and
heterogeneous activity in ties, together with the large heterogeneity found in social connectivity
(which is related to ki(T )) could explain the apparent non-trivial growth of the aggregate ki(t)
observed in social networks [1] and highlights the importance of taking into consideration the
heterogeneity of activity of humans to define properly the way we measure and observe their
social networks. Finally these results emphasize the goodness of our method to detect open ties,
since in this simple example all ties are open at any time and then κi(t) is constant throughout the
observation window Ω.

2 Bursty dynamics of tie activation or deactivation

We observe that most people form and destroy edges almost constantly in time (see Main Text Fig.
3). However, despite the linear growth of the number of added and removed connections, the
distribution of the time gap between creation/removing of ties is not Poissonian (Fig.3), which is
in line with recent results [4]. Fig. 3 (a) and (b) show respectively the pdf of the time it takes for the
node i with degree ki to create one more connection (δtk,k+1) and to loose one connection δtk,k−1.
Specifically, we divide the whole population of users in four groups depending on their value of
αi and plot the distribution for each group. Despite the exponential cut-off, the results indicate
some bursty patterns of activity for sort times. In addition all distributions collapse into a single
curve suggesting that a universal form for the burstiness in the tie activation/deactivation.

Limited communication capacity unveils strategies for human interaction
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SI Figure 3: (Rescaled) Distribution of the time gap between edge creation (a) and edge removal (b)
for groups of nodes with different activity rate αi, where groups have been obtained according to the
quartiles of αi for the whole population.

3 Linear growth of tie activation or deactivation

Although tie activation/deactivation events do not happen homogeneously in time, the strong cut
off in the bursty inter-event time found in the previous section suggests that there exists a typical
time scale in which those events happen and thus, for a larger enough observation time, we should
expect linear growth for the accumulated number of events nα,i(t) and nω,i(t). Indeed, by taking
these time series and fitting them to linear models we get the rates αi and ωi explained in the
main text. The statistical significance of the fit of those to each individual dynamics is shown in
Fig. 4 where we can see that the linear fit is statistically significant for a majority of users with
nα,i(T ) = 5 and for most users with nα,i(T ) > 5 (same results for nω,i). On the other hand, for
those selected individuals for which p-value < 0.05 the goodness of fit is on averageR2 ' 0.91 with
93% of them with R2 > 0.8. Thus, the results presented in the following section and in the main
text for αi and ωi are only for those with nα,i(T ) ≥ 5 (same for nω,i(T )) for which the goodness
of fit is around R2 ' 0.91 and the percentage of those with a p-value smaller than 0.05 is around
100%. They amount up to 75% of the total number of users.

4 Statistical evidence for the conservation of social capacity

One of the key findings in our study is the fact that for a given individual i the rate at which ties
are formed αi equals that at which ties decay ωi. This implies that social capacity, i.e. the number
of open connections at a given instant is more or less constant in time. In this section we describe
the analysis performed to reach this statement and the null model used to asses the statistical
significance of αi ' ωi. The basic problem is the fact that for most of our users in the database, the
number of events nα,i and nω,i is very small and then we get large differences between the values
of αi and ωi obtained.

Limited communication capacity unveils strategies for human interaction
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SI Figure 4: Ratio of the number users for who a linear fit to the nα,i(t) ∼ αit (red) and nω,i(t) ∼ ωit

(blue) time series has a p-value smaller than 0.05 for the F-test. Different columns refer to different
groups of users according to their total number of activated/deactivated ties in the observation period
Ω.

We will test that our results are comparable statistically to a null model in which ties are formed
and destroyed in the observation window Ω according to two different realizations of a Poisson
process with the same rate α = ω. The choice of Poisson process as the renewal process that de-
scribes the formation and decay process is supported by the bounded probability distribution for
the inter-event times between formation/decay of events seen in previous section. Of course this
is an approximation, because there is a large probability of bursts of formation/decay events than
predicted by the exponential distribution of the Poisson process. The approximation works better
for large times or number of events, since in that limit the strong decay of the inter-event time
distribution for large values makes the process to converge to the behavior of a Poisson process
very quickly by means of the Central Limit Theorem [16].

Since there is a large heterogeneity of social activity in our database we take as input for our
null model the actual values of nω,i to incorporate that heterogeneity in our null model. We have
also done simulations taking nα,i and the results are the same. Thus, our Monte Carlo simulations
of the null model are as follows: for every individual i we take λi = nω,i/212 as the rate for
tie formation and decay of ties per day and simulate two Poisson processes in the observation
window Ω with the same rate, one for the formation of ties and the other for the decay of ties. We
then calculate the times series of the aggregate number of events n̂α,i(t) and n̂ω,i(t) and fit them to
linear models to obtained the simulated α̂i and ω̂i. In line with the results of previous section, we
only consider for the fit those simulations for which the n̂α,i(T ) ≥ 5 and n̂ω,i(T ) ≥ 5 in the fit.

As shown in the caption of Main Text Fig. 3b (see details there), the observed values for nα,i(T )

and nω,i(T ) in our database can be well explained by our simulations, suggesting that our model

Limited communication capacity unveils strategies for human interaction
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works well at that particular time scale. We also find a good agreement between the measured
values of αi and ωi and the results of our null model as shown in Main Text Fig. 3c, although there
a small amount of outliers that cannot be explained by our model.

5 Measuring neighborhood persistence

We measured the persistence pi of a user i as the fraction of his neighbors present at the beginning
of the observation period Ω that are maintained until the end of Ω. Specifically, pi = (Ei(0) ∩
Ei(T ))/Ei(0), where Ei(0) and Ei(T ) are respectively the set of ties that user i has at time 0 and
time T (see Main Text Fig. 1). Once measured pi for all users in our dataset, we find that the
average persistence pi is 0.75. As discussed in the main text, this suggests that although in a
given time period users activate and deactivate many connections (on average half of their social
connectivity), after a period of 7 months they maintain on average the 75% of their initial social
network.

We also mentioned that this value is much larger than the one obtained in a model in which
each tie is activated and deactivated with the same probability, suggesting that as expected indi-
viduals do not establish or remove social connections randomly. To address the latter, we sim-
ulated the following process: for a given user we preserve (i) all the properties of his measured
social strategy (ki, κi, nα,i, nω,i) and (ii) the real sequence of both his tie activation and deactivation
time instants. Thus, following the order of such sequences, at each activation (deactivation) time
we allow the user to add (remove) one of his neighbors randomly chosen among all his neighbors.
Note that in the random model we maintain all the properties of the individual social network and
strategy and the only thing that we destroy is the selection of neighbors added and/or removed
within the observation period Ω. We then repeat this process for all users in our dataset and for
each of them we measure the new network persistence p′i. As discussed in the main text, we found
that p′i = 50%, against the pi = 75% measured for the real case, which suggests that the way in
which people activate, maintain and deactivate social relationships is, as expected, not random
and some ties are more probable to be destroyed than others.

6 Relation of the social strategy with topological properties

We find a significant dependence between the social strategy for an individual (encoded through
the parameter γi) and the topological properties around that individual. Specifically, figure 5
shows how the persistence defined in the previous section depends heavily on γi but shows a
large independence with the total connectivity of individuals in the period of observation. Specif-
ically social keepers (those with γ < 0.2) do show a large persistence in their social neighborhood
(even up to 90%), while social explorers (γ > 2) only keep a small fraction of their initial ties at
the end of the 7 months period, even down to 40%. On the other hand, the aggregated clustering
coefficient also depends on the social strategy: social keepers tend to have more clustered neigh-
borhoods than social explorers. Specifically, we find that ci can be up to 0.22 for social keepers,
while it decreases to 0.05 for social explorers. Note that in the case of the clustering coefficient we
also observe that it decreases with increasing average connectivity, a effect well known in social
networks [14]: c(ki) is typically a decreasing function with ki reflecting the fact that for largely

Limited communication capacity unveils strategies for human interaction
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SI Figure 5: Relation of the social strategy with topological properties: dependence of the average
persistence of ties (A) and aggregated clustering (B) as a function of the total connectivity ki and social
strategy γi. (C) Average value of next neighbor connectivity knn,i of a node as a function of its own
connectivity ki. The Pearson correlation coefficient between the two quantities is ρ(ki, knn,i) = 0.342

with a confidence range of [0.278,0.316] (D) Average value of the parameter γnn,i for the neighbors
of an individual as a function of her own value of γi, ρ(γi, γnn,i) = 0.412 with confidence interval
[0.394,0.429]. A clear growth can be seen in both cases, indicating a strong assortativity.

connected people it is increasingly more difficult to have a moderate clustering. However, in
Fig. 5 we see that the clustering not only depends on the connectivity, but also on the social strat-
egy. Since both factors have opposite effect on clustering we find, for example, that social keepers
with large connectivity might have the same clustering as social explorers with small connectivity.
Thus the aggregated clustering found in social networks is a function of both connectivity and so-
cial strategy, suggesting that its value is determined dynamically by the tie formation/destruction
processes around a given individual.

Finally, in our database we observe that social connectivity is assortative, in line with other
studies [14]. More interestingly, we find that also social strategies of communication are assor-
tative, as it is shown in Fig. 5. As mentioned in the main text, this result indicates that people
that establish and remove many connections from their network at a high rate (social explorers)
are more likely to interact with people that also change their network quickly. Analogously, those

Limited communication capacity unveils strategies for human interaction



G. Miritello, R. Lara, M. Cebrián and E. Moro 10

days

0

20000

40000

60000

0 500 1000 1500
time/(60 * 60 * 24)

co
un
t

# 
w

al
l p

os
ts

⌦

SI Figure 6: Activity in the Facebook database. Number of communications through the wall in our
database for periods of 30 days. Dashed lines show the limits of the observation time window Ω.

individuals that maintain a more stable social network (social keepers) also interact with people
with the same strategy. As a consequence, the large volatility observed in the neighborhood of so-
cial explorers also extends to large proportions of the network around them and the same applies
for social keepers. The global network thus consists of almost static zones of social keepers and
high volatile clusters of social explorers that, as discussed in the main text, also have important
implications in terms of information diffusion.

7 Facebook data set

We have also analyzed other communication data to test our results. In particular, we have studied
the 90,269 users of the New Orleans Network crawled during by Viswanath et al. [10]. The data
consists of communication events between users through Facebook wall from September 26th,
2006 to January 22nd, 2009. Contrary to the mobile phone data, the Facebook data is not steady
in time, since the database extends over the early days of Facebook growth and thus it shows a
growth in the activity over years, which translates in more wall posts and also more users as a
function of time (see Fig. 6).

To minimize this effect we have chosen only communication events between users that did
show any activity in the observation window Ω (the time interval between 1000 and 1212 days in
the database) and also which were present 20 days before and after Ω. We do not consider the
links to be reciprocated in order to have more data accessible for our analysis. With this filter our
database contains 125 × 103 communication events of ∼ 104 users and 69 × 103 ties. On average,
users interact with 〈ki(T )〉 = 6.15 users in 7 months and the social activity is 〈nα,i(T )〉 = 3.01,
〈nω,i(T )〉 = 3.02 ties formed and decayed respectively. Our results are very similar to the ones ob-
served for mobile phone data, namely that social activity is roughly half of the social connectivity
in 7 months. However, users show a lower level of wall activity: for example, 40% of the users
are involved in less than 10 communication events through the wall in seven months (while in the
mobile phone data the average number of calls exchanged per user was ∼ 700 in seven months).

Limited communication capacity unveils strategies for human interaction
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SI Figure 7: Social dynamics in the Facebook database. (a) Relationship between the number of
formed nα,i and decayed nω,i ties in the observation window for the users in our database. The box
plot shows the 25% and 75% percentiles (filled box) and 5% and 95% percentiles (whiskers), the solid
black line is the relationship nα,i = nω,i and the blue curves correspond to the 5% and 95% percentiles
of the corresponding Poisson null model in SI section E for our data. (b) Density plot ρ(ωi, αi) for the
users with more than 2 ties formed and decayed. Dashed line is theαi = ωi and the curves correspond
to the contour lines ρ = 0.03 for the density of actual values of the rates (red) and the ones obtained
in the Poissonian model in SI section E (blue). (c) Log-density plot of the social activity nα,i and the
social capacity κi. Dashed lines correspond to the iso-connectivity lines ki(T ) = 10, 20, 50 and the
solid line is the relationship nα,i = 1.04κi obtained through PCA that explains 81% of the variance.

Thus, to determine the social dynamical strategies in Facebook data we concentrate on those users
that show a moderate level of communication, i.e. those that have more than 10 events in the 7
months of Ω. For those users in our database we find that nα,i(T ) ' nω,i(T ) and αi ' ωi, signaling
that users in Facebook tend also to conserve the number of open connections κi(t) in time (see
Fig. 7 (a) and (b)) . On average we find that 〈κi(t)〉 = 3.23. Finally, as in the mobile phone data
we find also a relationship between the capacity and the activity of users: in particular, 81% of the
variance can be explain by the relationship nα,i = 1.04κi [see Fig. 7 (c)].

In addition, as in the mobile phone network, we find a large assortativity not only in the social
connectivity, but also and more importantly in social dynamical strategies, i.e. individuals with
low γ (social keepers) tend to gather in the social network, while social explorers tend to inter-
act between them (see Fig. 8). Our results show that the dynamical strategies of communication
between users through Facebook wall also follow the same pattern as in mobile phone.
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