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SUPPLEMENTAL FIGURE LEGENDS 

 

Figure S1. Power of Our Genome-wide CMS Test Compared to Previously 

Published Methods, Related to Figure 1 

We compared the power of genome-wide CMS to previously published long-range 

haplotype tests (iHS and XP-EHH) using simulations developed by (Schaffner et al., 

2005) for three different populations (CEU, CHB+JPT, YRI). In carrying out the 

analysis, we identified and corrected an error in the code that simulated gene conversion 

during a selective sweep. Since power analysis on the long-range haplotype tests were 

previously published using the code with this error, we are presenting our power 

comparisons for both the (A) original and (B) corrected simulations across a wide range 

of causal allele ages (5,000 – 35,000 years). For both the original and the corrected 

version of simulations, CMS (red) provides power comparable to, and often better than 

the long-range haplotype methods (iHS: green and XP-EHH: blue). The corrected 

simulations demonstrate the greater power of CMS and the long-range haplotype tests for 

nearly all derived allele ages, and particularly for older derived alleles (20,000 – 35,000 

years) 
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SUPPLEMENTAL TABLE LEGENDS 

 

Table S1. Regions identified by genome-wide CMS, Related to Figure 1 

A list of regions identified in 1000G data by a genome-wide extension of the CMS test 

(CMSGW), at an FPR of 0.1%. 

 

Table S2. Localized CMS regions, Related to Figure 1 

A list of novel and previously discovered regions under positive selection that have been 

localized using the CMS method. The localized regions have an average size of 62 kb, on 

the order of single genes. 

 

Table S3. Enrichment of functional variants in selected regions, Related to Figure 1 

Enrichment analysis of different classes of variants. Since our 412 selected regions each 

contain at most one selected variant and a median of 46 other variants, enrichment 

analysis for different classes of functional elements will not be well-powered to detect an 

over-representation of functional variants. Fold-enrichment indicates enrichment over the 

genomic average. 

 

Table S4. Gene pathway enrichment in selected regions, Related to Figure 1 

Enrichment analysis of specific gene pathways using INRICH. Enrichment analysis of 

regions under selection may be less powered than typical analyses of regions associated 

with a particular phenotype (e.g. from GWAS), since selection acts on a number of 

different phenotypes and pathways.  

 

Table S5. lincRNAs in candidate selective regions, Related to Figure 3 

A list of lincRNAs that overlap with regions under positive selection. 

 

Table S6. Characterization of high-scoring non-synonymous SNPs, Related to 

Figure 2 

A list of non-synonymous SNPs that were high-scoring in regions under positive 

selection. 

 

Table S7. Candidate selective regions that overlap eQTLs, Related to Figure 3 

A list of eQTLs that overlap with regions under positive selection, including variants that 

are high-scoring by both CMS and eQTL analysis. 

 

Table S8. CMS high-scoring SNPs in active enhancers or promoters, Related to 

Figure 3 

A list of CMS high-scoring SNPs that disrupt enhancers and promoters. 

 

Table S9. Trait-associated CMS high-scoring SNPs , Related to Figure 3 

SNPs that are high-scoring by CMS and have also been associated with resistance to 

leprosy or tuberculosis or with a phenotype in the NHGRI GWAS catalogue. 
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EXTENDED EXPERIMENTAL PROCEDURES 

Coalescent Simulations 

We used the simulations described earlier in (Grossman et al., 2010), with one change: a 

coding error was fixed in the code that simulated gene conversion during a selective 

sweep  (neutral simulations were unaffected). The corrected simulations have improved 

the performance of long-range haplotype tests, such as iHS test, compared to earlier 

reports (Voight et al., 2006). We have thus included power calculations based on 

simulations with the bug and without for comprehensive comparison.  We include a 

complete description of our simulations below for completeness. 

 

We simulated population genetics datasets designed to mimic the 1000 genomes project 

data. Simulations were done using the cosi coalescent simulator(Schaffner et al., 2005), 

extended to simulate full and partial selective sweeps(Sabeti et al., 2007), and corrected 

as described above.  cosi performs coalescent simulations similarly to the widely used ms 

tool(Hudson, 2002), but allows recombination rate variation along the region.  Like ms 

and unlike some other coalescent simulators(Marjoram and Wall, 2006), cosi does not put 

any restrictions on which chromosomes within a population may coalesce (except during 

selective sweeps, when coalescence between chromosomes carrying selected and 

unselected alleles is forbidden). 

 

There were two aspects to the simulation: the base neutral model, and the model of 

selective sweep. 

 

Base neutral model 

For the neutral simulations, we used a demographic model previously shown to replicate 

HapMap data on several metrics (allele frequency spectrum, relationship between allele 

frequency and ancestral state, Fst, r
2
, fraction of marker pairs with D'=1, and 

heterozygosity)
49

. The model has been used in many previous studies(He et al., 2012; 

Sabeti et al., 2007).  The model includes three present-day populations -- West African, 

East Asian and European -- with present-day effective sizes of 24000, 7700 and 7700 

respectively.  The populations were formed via the following history: an ancestral 

population (effective size 12,500, expanding to 24,000 at time 17,000 generations ago) 

split into an African and a Eurasian population 3500 generations ago; the Eurasian 

population then split into European and Asian populations 2000 generations ago. 

 

Several population bottlenecks were modeled: one in the Eurasian population shortly 

after its creation (inbreeding coefficient = 0.085); and one in each present-day population 

shortly after the European/Asian split (inbreeding coefficients = 0.008, 0.67 and 0.02 for 

the African, Asian and European populations, respectively). 

 

Two-way symmetric migration was modeled for the (African, European) and (African, 

Asian) population pairs, with probability of 32e-6 and 8e-6 per chromosome per 

generation respectively, in the 500 generations following the Asian/European split.  (In 

the published model, migration continues until the present time; migration rates were 

found to be the least important parameters for matching HapMap data(Schaffner et al., 

2005). 
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For each simulation, a recombination map was generated using the 'recosim' program 

from the cosi simulator distribution.  The model included regional variation in 

recombination rates (estimated from deCode data) and local hotspots of 

recombination(Frazer et al., 2007).  The local recombination hotspots were modeled 

using a gamma distribution, with the shape parameter 0.35, mean hotspot spacing of 8500 

bp, size of region of local variation of 100000 bp, and the fraction 0.12 of the mean 

recombination rate kept constant across the region. The recosim parameter file appears 

below: 
 

model 1 

shape 0.35 

space 8500 

bkgd 0.12 

local_size 100000 

 

The distribution giving regional variation in recombination rates, estimated from decode 

data, was as follows:  
 

0.0 0.2 0.05052 

0.2 0.4 0.14890 

0.4 0.6 0.27919 

0.6 0.8 0.40295 

0.8 1.0 0.50370 

1.0 1.2 0.59713 

1.2 1.4 0.66145 

1.4 1.6 0.71358 

1.6 1.8 0.77198 

1.8 2.0 0.80874 

2.0 2.2 0.84086 

2.2 2.4 0.86372 

2.4 2.6 0.88945 

2.6 2.8 0.91396 

2.8 3.0 0.92996 

3.0 3.2 0.93987 

3.2 3.4 0.95006 

3.4 3.6 0.95487 

3.6 3.8 0.96286 

3.8 4.0 0.96884 

4.0 4.2 0.97386 

4.2 4.4 0.97876 

4.4 4.6 0.98233 

4.6 4.8 0.98540 

4.8 5.0 0.98787 

5.0 5.2 0.98971 

5.2 5.4 0.99101 

5.4 5.6 0.99351 

5.6 5.8 0.99531 

5.8 6.0 0.99575 

6.0 6.2 0.99633 

6.2 6.4 0.99706 

6.4 6.6 0.99740 
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6.6 6.8 0.99786 

6.8 7.0 0.99842 

7.0 7.2 0.99898 

7.2 7.4 0.99920 

7.4 7.6 0.99962 

7.6 7.8 0.99981 

7.8 8.0 1.00000 

 

Gene conversion was modeled at a fixed uniform rate of 4.5e-9 per chromosome per 

generation.  The mutation rate was fixed at 1.5e-8. 

 

The specification of the neutral model in cosi simulator input format appears below: 
 

gene_conversion_rate 0.0000000045 

mutation_rate 0.000000015 

length 1000000 

 

pop_define 1 european 

pop_define 4 asian 

pop_define 5 african 

 

#european 

pop_size 1 7700 

sample_size 1 120 

 

#asian 

pop_size 4 7700 

sample_size 4 120 

 

#african 

pop_size 5 24000 

sample_size 5 120 

 

pop_event migration_rate "afr->eur migration" 5 1 1505 .000032 

pop_event migration_rate "eur->afr migration" 1 5 1505 .000032 

pop_event migration_rate "afr->as migration" 5 4 1505 .000008 

pop_event migration_rate "as->afr migration" 4 5 1505 .000008 

 

pop_event bottleneck "african bottleneck" 5 1997 .008 

pop_event bottleneck "asian bottleneck" 4 1998 .067 

pop_event bottleneck "european bottleneck" 1 1999 .02 

 

pop_event split "asian and european split" 1 4 2000 

pop_event migration_rate "afr->eur migration" 5 1 1996 0 

pop_event migration_rate "eur->afr migration" 1 5 1995 0 

pop_event migration_rate "afr->as migration" 5 4 1994 0 

pop_event migration_rate "as->afr migration" 4 5 1993 0 

 

pop_event bottleneck "OoA bottleneck" 1 3499 .085 

pop_event split "out of Africa" 5 1 3500 

 

pop_event change_size "african pop size" 5 17000 12500 
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Modeling the Selective Sweep 

Selective sweeps in a single population are modeled in cosi using the structured 

coalescent approach(Braverman et al., 1995; Kim and Stephan, 2002; Przeworski, 2002), 

in which the population undergoing the sweep is partitioned into two pools 

(chromosomes with and without the selected allele) and coalescence is restricted to occur 

only within the same pool.  Recombination can move a sequence segment from a 

chromosome in one pool to a chromosome in the other, with the probability of such 

transitions determined by the frequency of the selected allele.  The frequency trajectory 

of the causal allele is modeled by the deterministic approximation of (Stephan et al., 

1992).  Our implementation closely follows that of (Kim and Stephan, 2002), with two 

differences: 1) we choose the initial and final frequencies of the beneficial allele to be 1-

1/2Ne and 1/2Ne, respectively; and 2) partial (soft) sweeps are supported, letting the final 

frequency of the causal allele be an arbitrary specified value.  For partial sweeps, the 

present-day chromosomes are randomly assigned to be in the causal allele pool or the 

non-causal allele pool based on the target final frequency of the causal allele. 

 

Implementation of the sweep algorithm was validated by direct inspection of the 

beneficial allele frequency trajectory and the associated coalescence and recombination 

rates. We tested the code’s large-Ne behavior by comparing the predicted heterozygosity 

within a selective sweep with the approximate model in (Durrett and Schweinsberg, 

2004) (Proposition 1, in that paper) and found excellent agreement. 

 

Our simulations included sweeps in each population; the age of the selected allele  

ranged over 5ky, 10ky, 20ky; and the final frequency of the selected allele ranged over 

0.2, 0.4, 0.6, 0.8 and 1.0.  These two parameters determine the selective coefficient.  For 

each combination of these parameters, we created 300 simulation replicas, with a single 

selected SNP in the middle of the 1MB region.  We also simulated 1300 neutral replicas 

(300 for constructing likelihood tables used in CMS computation, and another 1000 for 

evaluating the false positive rate of selection detection by CMS). 

 

While the simulations capture many aspects of the 1000G data, they still represent an 

idealized version of the real data. In particular, they do not include: 

 

 Sequencing, phasing or imputation errors 

 Uncertainty in the genetic map: the genetic map used in the analysis of each 

simulation is the true map, while the real data is analyzed using an estimated map 

constructed from haplotype data 

 Missing information about ancestral state of any SNPs  

 Regions with more complex selection scenarios, such as multiple positively selected 

SNP or other modes of selection 

 

Composite of Multiple Signals (CMS) 

Two versions of the CMS test were used: the original (within-region) CMS 

test(Grossman et al., 2010) for localizing the selected variant within a candidate region, 

and a modified test (denoted CMSGW) for identifying candidate regions within the 

genome. 
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iHS, XP-EHH, and iHH were calculated as described in (Voight et al., 2006) and (Sabeti 

et al., 2007) for all bi-allelic SNPs in the 1000G dataset, with the following modification 

for full sequence data.  The extended haplotype homozygosity, which forms the basis for 

these three tests, measures the probability that two randomly chosen chromosomes in a 

given population or with a specific core allele are identical from the position of the core 

allele to the position of a given marker.  This statistic aims to capture the length of the 

haplotype as it decays due to recombination.  When calculating this statistic from full 

sequence data, we found that haplotypes would often break due to a single low-frequency 

mutation, although it was clear from inspecting the data that the sequence continued to be 

nearly identical for a much longer stretch.  These premature breaks reduced the signal-to-

noise ratio.  To mitigate this effect, we excluded all rare SNPs below 5% from our EHH 

calculations. 

 

Mean pairwise FST and difference in derived allele frequency (ΔDAF) between the 

putative selected population and the two other populations was calculated for each SNP 

using allele frequencies from 1000G data. 

 

Five tests were included in the composite score: iHS, XP-EHH, iHH difference, FST, and 

ΔDAF.  The scores for each test except ΔDAF were normalized as follows: for within-

region CMS, scores were normalized within each simulated or real region; for CMSGW, 

scores were normalized to scores in simulated neutral regions (for simulations) or to the 

genome-wide distribution (for real data).  For each of the tests, we generated three 

empirical distributions from the simulations: (1) selected SNPs, (2) neutral SNPs within 

500kb of a selected SNP, and (3) SNPs in neutral regions.   Each distribution was 

represented using 60 bins.  For within-region localization, the value ranges used to define 

the bins were as follows: iHS, [-3,3]; XP-EHH,  [-3,3]; iHH difference, [-3,3]; FST, [-2,2]; 

and ΔDAF, [-1,1]; for CMSGW, the value ranges were as follows: iHS, [-6,6]; XP-EHH,  

[-3,8]; iHH difference, [-3,5]; FST, [-1,6]; and ΔDAF, [-1,1].   Values outside the range 

were binned into the nearest bin at the end of the range. 

 

For each test, we used these empirical distributions to calculate the posterior probability a 

given SNP was selected conditional on its score for that test.  Let 

 denote the test,  denote the score of test  at the 

SNP,  denote bin  of the distribution of values of test ,  denote the number 

of SNPs in the region, and /  denote the event that the SNP is/is not 

selected. Then, assuming exactly one SNP in the region is selected,
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computing the probability that a test score falls into a particular bin, rather than that it 

equals a particular value, solves the problem that the probability of seeing a particular 

value is zero for continuous-valued test scores.  Approximate Bayesian Computation 

(ABC) methods can also be used to address this problem (Csillery et al., 2010)). 
 

The composite likelihood is the product of the posterior probabilities that a given SNP is 

selected from each of the five tests: 

 

 

 

Because this is not a true likelihood (it assumes independence between the tests when in 

fact some are correlated), we calculated significance empirically from the distribution of 

scores in simulated neutral regions. 

 

CMSlocal vs. CMSGW 

 

When using CMS to localize regions, we used the distribution of neutral SNPs within 

500kb of selected SNPs as the “unselected” distribution and assumed exactly one selected 

SNP per region.  To use CMS as a genome-wide method to detect selected regions, we 

made the following modifications: 

(1) SNPs in neutral regions were used as the “unselected” distribution 

(2) We did not assume any prior hypothesis about how many SNPs are under 

selection.  Therefore instead of calculating the posterior probability, we calculated 

the Bayes factor for each test 

 

and defined the composite score as the product of the Bayes factor of each test: 

 

 
 

(3) Scores were normalized to neutral simulations (for simulated data) or to the whole 

genome (for real data), rather than within each region. 

(4) Bin boundaries were adjusted as described earlier. 

 

We identified 100kb regions in which 30% of SNPs had a normalized score above 3, a 

threshold which corresponded to a 0.1% FPR in simulations (i.e. in 1000 neutral 

simulations of a 1MB region no more than 1 contained a 100KB region meeting this 

criterion; the upper bound of the 95% binomial confidence interval for the FPR is 0.6%), 

and used this threshold to detect selected regions in the 1000 Genomes data.  We note 

that since the 1000G data includes 2.42Gb, we expect 24 false positive regions at this 

threshold.  
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Quality-controlled phased SNP and indel calls for the CEU, YRI and CHB+JPT 

populations released by the low-coverage portion of the 1000G project were downloaded 

from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/release/2010_03/pilot1/ , 

representing the March 2010 data release.   The phasing and imputation had been done by 

the 1000G project using IMPUTE2 software.   All genetic variants with more than two 

alleles were converted to biallelic variants, by mapping all alleles to two alleles while 

preserving alleles’ ancestral state where known.   Ancestral state was taken from the 

ancestral state data released by the 1000 genomes project at 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/technical/reference/ancestral_alignme

nts, constructed from a four-way alignment of human, chimp, orangutan and rhesus 

macaque.   Monomorphic SNPs omitted from 1000G data but present in HapMap Phase 

II data were added back into the data. Only SNPs genotyped in all three HapMap 

populations were used for CMS analyses.  Copy number variant calls were also taken 

from the 1000genomes project, available at ftp://ftp-

trace.ncbi.nih.gov/1000genomes/ftp/pilot_data/paper_data_sets/companion_papers/mappi

ng_structural_variation/. All CNVs with genotype information were used: specifically 

deletions, mobile element insertions, and tandem duplications. Rare CNVs with a 

frequency of less than 5% were excluded. 
 
CNV Overlap Analysis 

An instance of overlap is defined as a unique combination of a localized region and CNV 

that overlap one another. We found 60 such overlaps in the selected regions.  The 

probability of an overlap between a localized region of length and a CNV of length b is 

(a+b)/g, where g is the size of the genome.  Using the size and number of selection 

regions and summing over all possible pair-wise probabilities, the expected number of 

overlaps is 49.9885.  Using a Poisson distribution, the probability that 60 or more 

overlaps would be seen at random is 0.226.  

 

We also calculated an empirical p-value for CNV enrichment by simulating 1000 sets of 

randomly-located regions of the same size and number as the true regions, and recording 

the number of overlaps with the CNVs.  We found that real regions fell in the 85th 

percentile of these simulations (Pempirical=0.15). 

 

While our analysis of candidate causal variants focuses on SNPs, we catalogued CNVs as 

they could themselves be targets of selection. They can be found on our website at: 

http://www.broadinstitute.org/mpg/cms.  

 

Coding Variant Analysis 

We used 1000G project annotation of coding variants.  Since only 93% of the coding 

regions of the genome were covered in the dataset, we calculated the 95% confidence 

interval for the number of high-scoring non-synonymous variants present in the selected 

regions.  First we note that there are 317 observed non-synonymous SNPs in the selected 

regions and a total of 862,752 coding bases (using RefSeq exons).  If 93% of these are 

covered by sequencing, then 802,359 coding bases are observed in the dataset.  We can 

estimate the frequency of non-synonymous SNPs in coding regions to be 317/802359 = 

3.95x10
-4

.  Using a binomial distribution with N=802,359 and x=317, the 95% 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/release/2010_03/pilot1/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/technical/reference/ancestral_alignments
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/technical/reference/ancestral_alignments
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/pilot_data/paper_data_sets/companion_papers/mapping_structural_variation/
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/pilot_data/paper_data_sets/companion_papers/mapping_structural_variation/
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/pilot_data/paper_data_sets/companion_papers/mapping_structural_variation/
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confidence interval for the frequency is (3.53x10
-4

, 4.41x10
-4

).  Hence in the unobserved 

coding regions we expect between 21.3 and 26.6 non-synonymous SNPs.  Assuming the 

fraction of high-scoring non-synonymous SNPs in the unobserved regions is the same as 

in the observed regions, the confidence interval for the number of unobserved high-

scoring non-synonymous SNPs is (2.3,2.9).  Therefore we expect at most 38 high-scoring 

non-synonymous SNPs in the regions. 

 

Enrichment Analysis of Functional Variants 

We picked random sets of 412 non-overlapping regions in the genome that matched our 

selected regions in size. For each set, we calculated the fraction of variants that were 

within exons or lincRNAs, or had been previously associated with gene expression 

(eQTLs) or a phenotype (GWAS). We repeated these simulations 10000 times. P-values 

were calculated as the proportion of simulations where the fraction of variants with a 

particular annotation was higher than what we observed in our selected regions. 

 

Enrichment Analysis of Gene Pathways 

We manually defined functional categories that previous literature suggests may have 

played an important role in recent human adaptation. These include functions such as 

skin pigmentation, immune system processes, response to infectious disease, sensory 

perception, and metabolism. We searched the EntrezGene, Uniprot, and MGI mouse 

knockout descriptions of every gene in the human genome for certain keywords related to 

the function of interest. The keywords included the name of the pathway and its 

derivatives (e.g. immune, immuno-, immuni-, etc.), the cell-types associated with the 

pathway (e.g. hair cell for Hearing), and common molecules associated with the pathway 

(eg. melanin for Pigmentation, cytokine for Immune System). The keywords were as 

permissive as possible to generate a comprehensive initial list. 

 

We then manually reviewed the results of this search to remove any genes that were 

clearly not related to the category and assemble a set of genes for the function or 

phenotype of interest. There was some overlap between related pathways in our final 

lists. Between the Immune System and Response to Infectious Disease categories, there 

were 127 overlapping genes. The Sensory Perception category included all of the genes 

in the individual senses (Vision, Olfactory, Hearing) as well as a short list of genes 

related to taste perception. All of the gene sets have been made available online at 

http://www.broadinstitute.org/mpg/cms/. 

 

INRICHv1.0 was used to test for enrichment of these gene sets and functional categories 

(Lee et al., 2012). INRICH uses a two-step permutation algorithm to test for enrichment 

of pathways defined by the user or derived from published databases. On the first pass, 

for every region in the input list, the program randomly selects another region of the 

genome that matches the input region in terms of size, SNP number, and number of 

genes. For our analysis, this process was repeated ten million times, generating ten 

million random lists of regions that matched the input list. From these permuted lists, the 

program then calculates empirical p-values for enrichment in all of the input categories. 

On the second pass, INRICH randomly selects 10,000 of the permuted lists and calculates 

which categories and how many of them are enriched. This second step was also repeated 
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ten million times. The program then uses the results from the second-pass permutations to 

correct p-values from the first step, and reports the corrected and uncorrected p-values as 

its output. See http://atgu.mgh.harvard.edu/inrich/ for more information. 

 

 

Protein Structure Modeling  

We performed a blast search for solved protein structures that closely matched the amino 

acid sequence of our non-synonymous variants. Sequences that had a similarity of at least 

25%, and preferably over 40%, to the target sequence were selected as templates for 

homology modeling. Modeller9v8 was used to align the target sequence to the template 

sequences, and the alignments were further optimized through manual manipulation 

(Eswar et al., 2006). The final alignment was used to generate homology models using 

Modeller9v8. At least 10 models were generated for every protein. All homology models 

were assessed by their DOPE and GA341 scores, and the model with the lowest DOPE 

score was selected as the most reliable homology model. Modeller9v8’s loop refinement 

algorithm was then used to reduce the energy of unfavorable loops and generate a more 

stable and reliable final model. For toll-like receptor 5 (TLR5), Modeller9v8 could not 

accurately predict the characteristic crescent-shaped structure of the ectodomain. This 

was mainly due to a poor alignment between the leucine-rich repeat domains (LRRs) of 

TLR5 and the other TLR proteins used as templates. We therefore used a published 

computationally derived model of human TLR5, provided by Wei and colleagues (Wei et 

al., 2011). 

 

Multiple Sequence Alignments 

Multiple-species sequence alignments were generated by pulling the UCSC 44-way 

vertebrate nucleotide alignment for the region of interest and translating the alignment in 

the appropriate reading frame. 

 

LincRNA Expression 

RNA reads aligned to the hg18 genome were counted across the 4,421 previously 

detected regions of interest.  Reads were RPKM normalized against both the length of the 

region and the total read count in the lane (Mortazavi et al., 2008) to provide a baseline 

expression level for each region.  A region was considered to be an expressed lincRNA if 

it contained non-zero expression in at least half of the individuals in a population.  If the 

median expression was zero, the region was no longer considered, consistent with the 

methods of (Pickrell et al., 2010). 

 

A reference list of human lincRNAs was obtained by integrating publically available 

lncRNA annotations with transcriptome assemblies of RNA sequencing data from 24 

tissues and cell lines and processing those through a lincRNA calling pipeline (Cabili et 

al., 2011).  

 

RNA reads for YRI (Pickrell et al., 2010) were obtained from 

http://eqtl.uchicago.edu/RNA_Seq_data/.  RNA reads for CEU (Montgomery et al., 2010) 

were obtained from http://jungle.unige.ch/rnaseq_CEU60/.  Reads for both populations 

were obtained in fastq format and aligned to hg19 using the BWA aligner (Li and Durbin, 

http://atgu.mgh.harvard.edu/inrich/
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2009), version 0.5.7.  Read counts for each region were obtained using SAMtools (Li et 

al., 2009), version 0.1.16. 

 

All non-zero expression levels were quantile-normalized within each population in order 

to produce a normal distribution of expression.  All individuals with zero aligned reads 

for a given ncRNA were excluded from the quantile-normalization for that ncRNA. For 

individuals where multiple lanes of reads were available, their quantile-normalized 

expression level was averaged. 

 

eQTL Analysis 

To date, there have been several studies that have measured gene expression levels across 

the genome in the 1000G individuals. We obtained expression intensities of 47293 probes 

representing the majority of the human gene complement from (Stranger et al., 2007).  

We also downloaded the normalized gene expression levels for 22032 genes in the YRI 

individuals measured by RNA seq by (Pickrell et al., 2010), and the significant p-values 

for the CEU individuals measured by RNA seq by (Montgomery et al., 2010) (expression 

levels not released).  We used intensities or normalized read counts from each gene 

within 1 MB of each SNP within the selected regions as quantitive traits in a standard 

association test (Purcell et al., 2007), and recorded all regions that contained a significant 

eQTL SNP (using the significance thresholds defined in each of the studies).  We also 

tested for significant associations with lncRNA expression, using the expression levels 

defined above. 

 

Chromatin State Analysis 

We identified all variants in the CMS regions that fall in enhancer and promoters along 

with their motif disruptions from HaploReg (Ward and Kellis, 2012).  Within these motif 

disruptions, we identified those affect motifs that are candidate regulators in the 

combination of cell types where the enhancer or promoter is active. 

 

GWAS Datasets (TB, Leprosy, and NHGRI GWAS Catalogue) 

We compiled a database of polymorphisms associated with susceptibility to diseases and 

various other traits by combining hits reported in the NHGRI catalogue of genome-wide 

association studies (http://www.genome.gov/gwastudies/) with genome-wide significant 

SNPs from several published GWAS of a variety of infectious diseases (Davila et al., 

2010; Fellay et al., 2007; Ge et al., 2009; Jallow et al., 2009; Kamatani et al., 2009; 

Mbarek et al., 2011; Png et al., 2011; Zhang et al., 2009).  We intersected these hits with 

the selected regions, and identified all SNPs significantly associated with phenotypes that 

lie within the selected region.  

 

We examined in more depth a recent Wellcome Trust Case Control Consortium study in 

the Gambia (Thye et al., 2010) with 1,498 confirmed TB cases and 1,496 controls, 

genotyped on the Affymetrix GeneChip 500K Array comprising 500,568 SNPs using the 

CHIAMO algorithm. Multi-dimensional scaling of identity-by-state (IBS) metrics, 

calculated between each pair of individuals using a subset of 100,715 uncorrelated SNPs 

passing QC filters, identified three axes of genetic variation that distinguish most 

common ethnic groups in this study. The primary analysis focused on single-locus tests 

http://www.genome.gov/gwastudies/
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of association using 1,320 TB cases compared to 1,384 Gambian controls for all 405,226 

SNPs passing QC filters with a study-wide MAF > 1%. The trend test was performed in a 

logistic regression modeling framework, which was adjusted for the three axes of multi-

dimensional scaling, by inclusion as covariates in the logistic regression model, reducing 

the over-dispersion of trend tests from λ = 1.13 (no adjustment) to λ = 1.05. 

 

The host genetics study of leprosy in Indians (Wong et al., 2010) consisted of 258 

confirmed cases of leprosy and 300 controls from New Delhi.  All individuals in this 

study were genotyped with the Illumina IBC gene-centric 50K array. The microarray 

genotypes more than 48,000 SNPs distributed in approximately 2,100 genes throughout 

the genome, including 3,470 non-synonymous markers. The data quality control and 

analysis were performed using PLINK. Multi-dimensional scaling (MDS) and principal 

component analysis (PCA) were carried out with PLINK and EIGENSTRAT to remove 

population outliers. A total of 209 leprosy cases and 239 controls were carried forward 

for analysis after quality control filters. The primary test of association in the New Delhi 

and Kolkata cohorts was carried out with the Pearson's χ
2
 allelic test, Cochran-Armitage 

trend test and logistic regression. 

 

For both the TB and leprosy studies we then identified SNPs with evidence of association 

with susceptibility to these pathogens (P < 0.01) within the regions CMSGW detected to 

be under selection. 

 

Functional Testing of rs5744174 

Cell Lines 

293FT cells were grown in D-MEM GlutaMAX supplemented with 10% fetal bovine 

serum (FBS), 0.1 mM MEM Non-Essential Amino Acids Solution, 1 mM MEM Sodium 

Pyruvate Solution and 500 g/mL Gentamicin.  Jurkat E6.1 cells were grown in IMDM 

GlutaMAX supplemented with 10% FBS, 50 M 2-mercaptoethanol and 50 g/mL 

gentamicin. 

 

Reporter Construction 

Transgenes carrying either the ancestral (tlr5a; leucine) or derived (tlr5d; phenylalanine) 

form of TLR5 were synthesized and cloned into the retroviral vector m6pg carrying GFP 

as a transgene to create m6pg[tlr5a] and m6pg[tlr5d](Andersen et al., 2008). For the 

measurement of NF-κB activity in Jurkat cells the retroviral reporter m3pkb[luc] carrying 

an NF-κB inducible luciferase reporter was used as previously described (Loizou et al., 

2011). In 293FT cells NF-κB activity was measured using pGL4.32 and pGL4.74 

(Promega). 

 

Stable Cell Construction 

Stable 293FT and Jurkat cell lines were created by transducing the cells with either 

m6pg[tlr5a] or m6pg[tlr5d]. The transduction efficiency was around 30% in all cases. 

Based on the expression of the GFP transgene, the transduced cells were then subjected 

to multiple rounds of cell sorting using a MoFlow (Beckman Coulter), until a purity of 

transduced cells were >95%. Using primers TGCATCCAGATGCTTTTCAG  and 

CCAGCCATTTCCAGAAACAT the expression of TLR5 was measured by qPCR using 
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the PerfeCta SYBR Green SuperMix, ROX (Quanta) according to the manufacturer’s 

instructions. 

 

293FT Luciferase Assays 

293FT cells stably expressing either the ancestral or derived forms of TLR5 were plated 

at 5 X 10
4
 cells per well in 100 L complete media one day prior to transfection in 96-

well tissue-culture treated plates (Nunclon).  For each well of co-transfection, 100 ng 

each of pGL4.32 and pGL4.74 DNA was combined with 0.12 L Plus reagent in 20 L 

of Opti-MEM I Reduced Serum Medium for 5 minutes.  0.4 L of Lipofectamine LTX 

was then added, mixed and incubated at room temperature for an additional 30 minutes 

before being added drop-wise to cells.  Cells were incubated at 37C, 5% CO2 and after 

four hours 75 L of media was aspirated from each well and replaced with complete 

media and allowed to incubate for an additional 22 hours.  Following incubation cells 

were stimulated for an additional 24 hours with 800 ng/mL PMA or increasing levels of 

flagellin at 1, 5, 10 or 100 ng/mL.  Cells were then lysed using 75 L of Dual-Glo
®
 

Luciferase Reagent and after 10 minutes firefly luminescence was measured in a 96-well 

plate reader (Top Count).  75 L of Stop & Glo
®

 Substrate was added to each well and 

after 10 minutes Renilla luminescence was measured in a Top Count machine. 

 

Jurkat Luciferase Assays 

One day prior to transfection 293FT cells were plated in a 10 cm
2
 dish so that they were 

90% confluent at the time of transfection.  6.6 g each of m3p[Luc], retroviral packaging 

pCL-Eco and viral envelope VsV-g DNA were combined with 12 L Plus reagent in 2.5 

mL of Opti-MEM I Reduced Serum Medium for 5 minutes.  40 L of Lipofectamine 

LTX was then added, mixed and incubated at room temperature for an additional 30 

minutes before being added drop-wise to cells.  Cells were incubated at 37C, 5% CO2 

for four hours and the media was aspirated from the plate and replaced with complete 

media.  The cells were incubated for an additional 20 hours at which point the 

supernatant containing viral particles was removed and filtered using a 0.45 M filter.  

Filtered virus was stored in the -80C freezer. 

 

Jurkat cells stably expressing either the ancestral or derived forms of TLR5 were seeded 

at 2 X 10
5
 cells per well in 100 L complete media on the day of transduction.  50 L of 

m3pkb[luc] viral supernatant and 6 g/mL protamine sulfate were combined and added 

to each well.  The 96-well plates were spun at 400 x g for 2 hours at 32C.  Plates were 

incubated for 20 hours at 37C, 5% CO2.  Following incubation, plates were centrifuged 

for 5 minutes at 400 x g and 100 L of media was aspirated and replaced with 50 L 

complete media.  Following an additional 6 hour incubation, cells were stimulated with 

400 ng/mL PMA and 1.5 g/mL ionomycin or 10 ng/mL flagellin.  After a 24 hour 

incubation, cells were lysed with the Bright-Glo™ Luciferase Assay Reagent (Promega) 

and after 10 minutes firefly luminescence was measured in a Top Count machine. 
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