Supplemental information

KIF7 (Costal2) mutations cause fetal Hydrolethalus and Acrocallosal syndromes

Audrey Putoux^{1,2,*}, Sophie Thomas^{1,2,*}, Karlien Coene³, Erica E Davis⁴, Yasemin Alanay⁵, Gönül Ogur⁶, Elif Uz⁷, Daniela Buzas⁸, Céline Gomes¹, Sophie Patrier⁹, Christopher L Bennett⁶, Nadia Elkhartoufi¹⁰, Marie-Hélène Saint Frison¹¹, Luc Rigonnot⁸, Nicole Joyé^{9,12}, Solenn Pruvost¹³, Gulen Eda Utine⁵, Koray Boduroglu⁵, Patrick Nitschke¹⁴, Laura Fertitta¹, Christel Thauvin¹⁵, Arnold Munnich^{1,2,10}, Valérie-Cormier-Daire^{1,2,10}, Raoul Hennekam¹⁶, Estelle Colin¹⁷, Nurten A Akarsu⁷, Christine Bole-Feysot¹³, Nicolas Cagnard¹⁴, Alain Schmitt¹⁸, Nicolas Goudin¹⁹, Stanislas Lyonnet^{1,2,10}, Férechté Encha-Razavi^{1,2,10}, Jean-Pierre Siffroi^{9,12}, Mark Winey²⁰, Nicholas Katsanis⁴, Marie Gonzales^{9,12}, Michel Vekemans^{1,2,10}, Philip L. Beales²¹, Tania Attié-Bitach^{1,2,10}

1- INSERM U-781, Hôpital Necker-Enfants Malades, Paris, France

2- Université René Descartes, Paris 5, France

3- Radboud University Nijmegen Medical Centre, Department of Human Genetics (855), Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands

4- Departments of Cell Biology and Pediatrics, Center for Human Disease Modeling, Duke University, Durham, NC 27710, USA

5- Pediatric Genetics Unit, Department of Pediatrics, Hacettepe University Medical Faculty, Ankara, Turkey

6- Ondokuz Mayis University, Department of Medical/Pediatric Genetics, Samsun, Turkey

7- Gene Mapping Laboratory, Department of Medical Genetics, Hacettepe University Medical Faculty, Ankara, Turkey

8- Service de Gynécologie-Obstétrique, CH Sud Francilien, Evry, France

9- Service de Génétique et d'Embryologie Médicales, Hôpital Armand Trousseau, Paris, France

10- Département de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France

11- Service d'Anatomie Pathologique, CH Victor Dupouy, Argenteuil, France

12- Université Pierre et Marie Curie, Paris 6, France

13- Genomic Core Facility, Imagine Fondation, Hôpital Necker-Enfants Malades, Paris France

14- Service de Bioinformatique, Université Paris – Descartes, Paris, France

15- Service de Génétique, CHU de Dijon, Dijon, France

16- Department of Pediatrics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands

17- Service de Génétique, Hôpital d'Angers, France

18- CNRS UMR 8104, Institut Cochin, Université Paris Descartes, Paris, France

19- IFR 94, Faculté de Médecine Necker, Paris, France

20- MCDB, UCB 347, University of Colorado at Boulder, Boulder CO 80309-0347, USA

21- Molecular Medicine Unit, University College London (UCL) Institute of Child Health, London WC1N 1EH, UK

* Equally contributed

Corresponding author:

Tania ATTIE-BITACH Département de Génétique et Unité INSERM U-781 Hôpital Necker-Enfants Malades, Paris, France Tel: 33 (0) 1 44 49 51 44 Fax: 33 (0) 1 44 49 51 50 Email: tania.attie@inserm.fr

Supplementary figure 1: Results of linkage analysis in family 1

(a) Results of the multipoint linkage analysis with Affymetrix 250K SNP chips using MERLIN software assuming a fully penetrant recessive model with a disease allele of frequency 0.0001 and allowing for heterogeneity between families. The highest heterogeneity lodscore (Hlod 2,6) is found on chromosome 15. (b) Pedigree of family 1 and haplotype analysis confirming homozygosity on chromosome 15 between D15S114 and D15S127.

Supplementary figure 2: *KIF7* mutations result in impaired cilia length

(**a-c**) Confocal microscopy of two different *KIF7*-mutated fibroblast lines from affected individuals ACLS-T1 and ACLS-N1 marked by acetylated alpha tubulin (axoneme) and pericentrin (basal body). While cilia were apparently normal in human fibroblasts from control (**a**) and *KIF7* mutated patient ACLS-T1 (**c**), they seemed markedly longer in ACLS-N1 (**b**). Measurement of cilia length (**d**): Analysis of variance (Anova) showed a significant difference on cilium length between control and patient ACLS-N1 fibroblasts. Ultrastructural analysis of primary cilia from *KIF7* mutated ACLS-T1 shows apparently normal structural components: (**e**) Longitudinal section of a primary cilium growing into a ciliary pocketThe inset is a higher magnification of the primary cilium basal body. (**f**) Longitudinal section of a primary cilium thought the basal body showing the 9 microtubular triplets normally organized. (**g**) Longitudinal section through the transition zone of a primary cilium showing normal anchoring at the plasma membrane.

Supplementary Table 1 : Syndromes including cerebral anomalies and polydactyly.

OFD: orofaciodigital syndrome; HPE: holoprosencephaly; HPS: Holoprosencephaly-Polydactyly syndrome (pseudotrisomy 13); PHS: Pallister-Hall syndrome, DWM: Dandy-Walker Malformation, OE: occipital encephalocele; MTS: molar tooth sign; MR: mental retardation

Syndromes	ОМІМ	Vermis	Corpus Callosum	Other brain anomalies	Upper limb Polydactyly	Lower limb Polydactyly	Cleft	Other	Molecular defect
Greig	175700	-	agenesis	-	Post-axial	Preaxial	-	Macrocephaly, Hypertelorism, Syndactyly	GLI3
PHS	146510	-	normal	hypothalamic hamartoblastoma	Post axial or central	Post axial or central	-	Facial dysmorphism, bifid uvula, syndactyly, cardiac malformation, renal anomalies, imperforate anus	GLI3
Acrocallosal	200990	Agenesis DWM	agenesis	Arachnoid cysts Anencephaly	Post-axial	Preaxial	-	Macrocephaly, Hypertelorism	?
HPS	264480	-	possible agenesis	HPE Hydrocephaly	Post-axial	Preaxial	+	Micrognathia, Genital anomalies in male	?
Hydrolethalus	236680	-	possible agenesis	Hydrocephaly Anencephaly	Post-axial	Preaxial	+	Cardiac anomalies Key hole foramen magnum Micrognathia, Polyhydramnios	HYLS1
Joubert	213300	MTS	normal	OE Polymicrogyria	Post-axial	Post-axial	-	MR, Cerebellar ataxia Abnormal eyes movements Retinal dystrophy, Renal anomalies	JBS1-JBS10
Meckel	249000	agenesis MTS	normal	OE Anencephaly	Post-axial	Post-axial	+/-	Cystic kidneys, Biliary dysgenesis Skeletal anomalies	MKS1-MKS6
OFD VI	277170	agenesis MTS	agenesis	Wide ventricles	Central	Preaxial	+	Lingual and dental anomalies Genital anomalies	TMEM216/MKS2

Supplementary Table 2: *KIF7* Primers used for sequencing and RT-PCR.

PCR primers were selected with primer3 program (http://frodo.wi.mit.edu/primer3/ input.htm) according to reference sequence NM_198525. PCR products were purified with the Exo-SAP cleanup kit (USB) and sequenced with BigDye chemistry and ABI 3100 (Applied Biosystems) automated sequencer. Sequences were analyzed with SeqScape® software.

Primers	Sequence	PCR size
KIF7-2F	AGGAGCTGCAGGATCTGG	591
KIF7-2R	CACAGATCCCTGTCTAGGAAATC	
KIF7-3F	CACTGCCTTCTCCATCCTAGAG	458
KIF7-3R	GCTAAAGCAAAACCTCCCAG	
KIF7-4F	GGTCAGGAAGGGCAGGTT	717
KIF7-4R	CCCAGCGAGTCTTTGAGGAT	
KIF7-5F	AGGTCCCCTGAGGTCTCC	826
KIF7-5R	AGCTGGAGACCTGAGACTCG	
KIF7-6F	CACCAGTGGGTCTGGAGTTC	376
KIF7-6R	GACTCTACACCCCTACCCCG	
KIF7-7F	TTTGACACTCCTCATTTTCAGC	494
KIF7-7R	ACAGCTGAAAGCAGCCTCTC	
KIF7-8F	CAGAGGGGTCATTTGAGCTG	386
KIF7-8R	CATCCTAGGACCCAGAGGC	
KIF7-9F	TCTGCCAGACTCACATCCTG	721
KIF7-10R	AGGCTGGGCTGAGTATCAAA	
KIF7-11F	CAAAGGCTTGGTGAAACCC	472
KIF7-11R	CTATACCAGCCTCACCCTGC	
KIF7-12F	CCGGCCTCTGTTATTATTATTGG	467
KIF7-12R	CAGGCTAAGTGACCTGCTTTC	
KIF7-13F	AGATTTGTGTGGGATGGGTC	742
KIF7-14R	TGGCAGGTTTATCACTTGGA	
KIF7-15F	GCTGAGCAGAACATTTGGAG	474
KIF7-15R	AGTGAAAACTTGGGTCTGCC	
KIF7-16F	GCTGACTTGGCCCTTGG	473
KIF7-16R	CTGCAGATGAGTTGGTCCTG	
KIF7-17F	GGGAAGACCCTGGTGATTTC	358
KIF7-17R	GCCGGGGTTGTGAGCCAT	
KIF7-18F	ACAGCCCCTGCACCTACA	398
KIF7-18R	AAGCAACCTGTGAATTGAGC	
KIF7-19F1	TGGGGAAAGCTTAGAGACCA	445
KIF7-19R1	ACAAAGGCCCAAAGTTCCAG	
KIF7-19F2	GACAGGCTCCTGGAAATGAA	473
KIF7-19R2	TTGATCCCAGTGAGGGTACAG	
RT-PCR		
KIF7-RT-14F	AGAAGACGGGGCTGGAGA	290
KIF7-RT-16R	GGCCTCATCCAACTGGAAC	
KIF7-RT-1F	CTGGGGATGGAAACCTGACT	614
KIF7-RT-4R	CTCCACGTCGACCTCCTTC	

KIF7 missense variations	Phenotype	Other mutated alleles	db SNP	1000 genomes	Controls	PolyPhen-2	SIFT	Human Splicing Finder
c.3345C>G, p.H1115Q	MKS HLS	-	-	-	0/384	Probably damaging PSIC: 0.995	Not tolerated	
c.2501A>G, p.Q834R	OFDVI BBS (x2)	BBS10 : p.C91fsX95 heterozygous, BBS7: p.Q293P heterozygous	-	-	3/384	Possibly damaging PSCI: 0.550	Not tolerated	
c.1895C>T, p.P632L	PHS	-	-	-	0/384	Benign PSCI: 0.001	Not tolerated	
c.2105G>A, p.R702Q	ACLS	-	-	-	0/384	Probably damaging PSCI: 0.900	Tolerated	Possible splice modification
c.1921A>G, p.R641G	BBS	BBS1: p.M390R homozygous	-	-	0/384	Benign PSCI: 0.112	Not tolerated	Possible splice modification
c.2276T>C, p.L759P	BBS	-	-	-	0/384	Possibly damaging PSIC: 0.693	Not tolerated	
c.2981A>G, p.Q994R	BBS	BBS1: [p.M390R]+[p.R419X]	-	-	0/384	Possibly damaging PSCI: 0.813	Tolerated	
c.3202C>T, p.R1068W	BBS	<i>B</i> BS9: [p.K621fsX22]+[p.A665fsX13]	-	-	0/384	Probably damaging PSIC: 0.997	Not tolerated	

Supplementary Table 3: Heterozygous missense variations found in the KIF7 gene

MKS: Meckel, HLS: Hydrolethalus, OFDVI: orofaciodigital type VI, BBS: Bardet-Biedl, PHS: Pallister-Hall, ACLS: acrocallosal syndrome

Supplementary Table 4: Zebrafish somite angle morphometrics for *kif7* mutant rescue assays

		Measurem	ents				
Injection	n=	Mean (°)	S.E.M.	vs. WT RNA	vs. WT rescue	vs. MO	Pathogenicity
Controls	59	84.1	0.5				
МО	58	99.1	1.0				
WT RNA	57	87.8	1.0				
MO + WT RNA	43	88.2	1.2				
P632L RNA	62	86.7	0.7	0.3758		< 0.0001	Hypomorph
MO + P632L	63	94.1	0.8		0.0001	0.0001	
R641G RNA	63	85.9	0.7	0.1255		< 0.0001	Hypomorph
MO + R641G	61	92.9	0.7		0.0005	< 0.0001	
R702Q RNA	60	86.6	0.6	0.3045		< 0.0001	Hypomorph
MO + R702Q RNA	65	93.8	0.8		0.0001	< 0.0001	
L759P RNA	58	85.1	0.7	0.0273		< 0.0001	Hypomorph
MO + L759P RNA	56	96.0	0.8		< 0.0001	0.0174	
Q834R RNA	52	86.1	0.8	0.2027		< 0.0001	Hypomorph
MO + Q834R RNA	59	94.3	1.1		0.0005	0.0015	
Q994R RNA	60	87.0	0.8	0.5301		< 0.0001	Hypomorph
MO + Q994R	59	95.0	0.9		< 0.0001	0.0029	
R1068W RNA	71	86.6	0.6	0.2870		< 0.0001	Hypomorph
MO + R1068W RNA	60	94.8	1.4		0.0008	0.0115	
H1115Q RNA	58	88.0	0.8	0.8496		< 0.0001	Hypomorph
MO + H1115Q RNA	55	95.0	1.1		0.0001	0.0056	
R1325Q* RNA	52	84.9	0.8	0.0279		< 0.0001	Benign
MO + R1325Q* RNA	49	87.1	0.9		0.4167	< 0.0001	

Somite angle Measurements

* rs73477443

Supplementary Table 5: List of genes deregulated in *KIF7* mutated fetuses

List of genes deregulated (fold change >1.2; p<0.05) in *KIF7* mutated fetuses as compared to age-matched controls. Work sheets 1 to 5 contain the lists of genes presented in the heat map. Work sheets 6 and 7 contain all the genes down or up regulated respectively in *KIF7* mutated fetuses as compared to age-matched controls. Work sheet 8 contains the qPCR results with theTaqMan Assays of the selected GLI targets used.

See Excel file online.