Table S8. Studies assessing association between *E. multilocularis* infection in foxes and environmental factors | Reference | Study Information | Statistical Method | Significant Factor | |----------------------------------|---|-----------------------------------|--| | Kritsky et al., 1978
[92] | Post mortem
examination of 1,153
foxes in North Dakota
(EE.UU) | Univariable analysis | Seasonal variation of prevalence (<i>p</i> =0.0131) | | Tackmann et al., 1998 [81] | Post mortem
examination of 4,374
foxes in Brandenburg
(Germany) | Univariable analysis | Variations in prevalence among 3 geographic zones (p<0.001) | | Hofer et al., 2000 [76] | Post mortem
examination of 388 red
foxes in in Zurich
(Switzerland) | Univariable analysis | Seasonal variation in prevalence in urban sub-adult males (<i>p</i> <0.001) | | Raoul et al. 2001 [88] | Post mortem
examination of 222 red
foxes in in Franche-
Comté (France) | Univariable analysis | Higher prevalence found in mid-altitude areas compared to low altitude areas (<i>p</i> <0.001) | | Denzin et al., 2005
[91] | Post mortem
examination of 1,341
red foxes in Saxony-
Anhalt | Multivariable logistic regression | Negative association with probability of infestation and the average annual maximum temperature (<i>p</i> =0.00001) | | König et al. 2005 [84] | Post mortem
examination of 268
foxes in Bavaria
(Germany) | Univariable analysis | Variations in prevalence among 3 geographic areas (p<0.001) | | Miterpáková et al.,
2006 [89] | Parasitological
examination of 3,096
foxes in Slovakia | Simple correlation | Prevalence (p=0.021) and abundance (p=0.020) correlated with mean annual precipitation | | Dubinsky et al., 2006 [85] | Parasitological examination of 392 foxes in Poland | Univariable analysis | Higher prevalence in the Polish border area with Slovakia (p=0.0009) | | Hegglin et al., 2007 [82] | Post mortem
examination of 582
foxes in Zurich
(Switzerland) | Multivariable logistic regression | Season (AICc
weight=1) (i.e.
summer/autumn vs
winter, OR 0.78,
95%CI 0.38-1.61) and
season * age (marked
in juveniles) (AICc
weight=0.69) 1 | | Brossard et al., 2007 | Post mortem | Univariable analysis | weight=0.69) ¹ Variations in | | [75] | examination of 3,793
foxes in western
Switzerland | | prevalence among geographic areas and seasons depending on host age (<i>p</i> <0.05) | |----------------------------------|--|--|---| | Hanosset et al., 2008
[93] | Post-mortem
examination of 990
foxes in Wallonia
(Belgium) | Univariable analysis | Seasonal variations in prevalence. Summer/autumn, vs. winter/spring (OR 1.4, 95%CI 1.04–1.98, p=0.03) | | Immelt et al., 2009
[87] | Post mortem
examination of 959
foxes in South Hesse
and Middle Hesse
(Germany) | Multivariable logistic regression | Higher parasite burdens associated with areas with high agriculture land and high amount of precipitation (p<0.0001) | | Miterpáková et al.,
2009 [90] | Post mortem
examination of 4,026
foxes in the Slovak
Republic | Simple correlation and multivariable logistic regression | Correlation between the mean annual precipitation and both prevalence (p =0.022) and worm burden (p =0.021). Regional differences in prevalence (p <0.001) | | Casulli et al., 2010
[86] | Post-mortem examination of 840 foxes in Hungary | Univariable analysis | Prevalence and abundance higher in the north-western half than in the southeastern half of the country (<i>p</i> <0.001) | Measures of association reported when available Abbreviations: OR, odds ratio; CI, confidence interval; AICc, Akaike's information criterion corrected for small samples sizes. ^(*) Interaction term. The model explaining best the prevalence rate in foxes (lowest AICc) included the variables *Zone*, season, age, zone × age, season × age.