Supplementary Data for:

The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase

Aline Tabib-Salazar, Bing Liu, Philip Doughty, Richard A. Lewis, Somadri Ghosh, Marie-Laure Parsy, Peter Simpson, Kathleen O'Dwyer, Steve J. Matthews & Mark S. Paget

Strain or plasmid	Relevant genotype/comments	Source/reference
Strains S. coelicolor A3(2) M145 J1915	Plasmid free derivative of wild-type M145 ∆glkA119	(1)
S101	J1915 <i>∆rbpA::hyg</i> (Hyg ^R)	(2)
S129	J1981 <i>∆rbpA::hyg</i> (Hyg ^R)	This work
J1981	M145 rpoC::his	(3)
E. coli		
ET12567 (pUZ8002)	dam, dcm, hsdM. pUZ8002 is a non-transmissible derivative of RK2 (Cm^{R}, Km^{R})	(4)
BL21λDE3 (pLysS)	E. coli B F ⁻ <i>ompT</i> hsdS($r_B^-m_B^-$) dcm gal λ (DE3) endA Hte (Tet ^R)	(5)
BTH101	<i>cya-</i> 99 derivatives of (Spc ^R)	
Plasmids		
pMT3000	<i>E. coli</i> cloning vector; <i>ori</i> pUC18 (Amp ^R)	(6)
pBluescript II SK [⁺]	<i>E. coli</i> cloning vector; <i>ori</i> pUC18 (Amp ^R)	(7)
рКТ25	Two-hybrid vector; T25 fragment of <i>B. pertussis</i> CyaA for N-terminal fusions (Km ^R)	(8)
pUT18	Two-hybrid vector; T18 fragment of <i>B. pertussis</i> CyaA for C-terminal fusions (Amp ^R)	(8)
pSET152	Integrative cloning vector; <i>ori</i> pUC18, <i>oriT</i> RK2, <i>int</i>	(9)
pSETΩ	pSET152 derivative (Spc ^R)	(10)
pIJ6902	pSET152-based expression vector, <i>tipAp</i> (Apr ^R Thio ^R).	(11)
pET15b	<i>E. coli</i> expression vector (His₀-tagged; Amp ^R)	Novagen
pET20b	<i>E. coli</i> expression vector (native; Amp ^R)	Novagen
pSX190	pSET152 containing C-terminally 3xFLAG-tagged rbpA.	This study
pSX233	pET20b containing S. coelicolor rbpA	(2)
pSX500	pET20b containing <i>M. tuberculosis rbpA</i>	This study
pSX505	pET15b containing S. coelicolor rbpA residues 1-75	This study
pSX510	pET15b containing S. coelicolor rbpA (R89A/R90A)	This study
pSX512	pMT3000:: <i>rbpA</i> (2) in which an <i>NdeI</i> site has been engineered at the	This study
	start codon. Includes promoter and terminator regions of <i>rbpA</i> .	
pSX528	pIJ6902 containing <i>rbpA</i> as an <i>NdeI-Bam</i> HI fragment from pSX233.	This study
pSX530	pSETΩ containing at the <i>Bam</i> HI site <i>a Bgl</i> II-fragment isolated from pMT3000:: <i>rbpA</i> .	This study
	. ,	

Table S1. Bacterial strains and plasmids used in this study

Construction/Oligo		Primer sequence (5' to 3')					
nucleotide name		(restriction sites indicated in bold)					
(A) Plasmid construct	s	•					
rbpA H3 rev		CCCGCTAAAGCTTCGCACTCTTGCG					
(B) Bacterial Two Hybrid Analysis							
S. coelicolor sigma factor fusions to T25 in pKT25 and <i>rbpA</i> fusions to T18 in pUT18 Amino acid							
T25-hrdB (σ_2 - σ_4)	F-	GGTCTAGAGACCGCCGACCCGGTCAAGGAC	211-511				
120 1100 (02 04)	R-	GGG GAATTC CTAGTCGAGGTAGTCGCGCAG					
T25-hrdB (aa.)	F-	GGTCTAGAGGTGTCGGCCAGCACATCCCGTAC	1-347				
	R-	GGGGAATTCCTAGCGCGCCTGGTCGGCCATCGC	1011				
T25 $hrdP(a)$	E.	CGTCTACACACCCCCCCCCCCCCCCCCCCCCCCCCCCCC	211-347				
12 3-1110D (0 ₂)	R-	GGG GAATTC CTAGCGCGCCTGGTCGGCCATCGC	211-047				
TOE hand D ()	E		3/9 511				
12 5- 11/08 (03-04)	г-		340-311				
TOE had D()	к- г	COTOTACACACTOCACCACCACCACC	40E E11				
125-nraB (04)	г- R-		435-511				
$T_{25}hrdA(\sigma_{-}\sigma_{-})$	F-	GGTCTAGAGTCCTCCGACCTGTTCCGGCAG	96-396				
120-muA (02-04)	R-	GGG GAATTC TCAGTCCAGGTAGCCCCTCAG	00 000				
T25 hrd $C(q, q)$	E-	CGTCTAGAGGAACCCGACCTGCTCGGC	35-330				
$125-1100(0_2-0_4)$	P_		33-333				
	E		20.220				
$125-nraD(\sigma_2-\sigma_4)$	г-		32-332				
TOF airD	к- г		1 001				
120-SIGD	г-		1-201				
TOE aigD	К- Г		1 007				
125-SIGR	г-		1-221				
T25 aigE	к- с		1 177				
120-SIYE	D		1-177				
T25 whiC	E	COTCTACA CATCOCCCACCACACOCTCC	1 280				
125-WIIIG	г-		1-200				
rhn A T10	Г Е		1 104				
тырд-тто	г-		1-124				
$rbnA^{1-72}$ - T18	F-		1_72				
	P_		1-72				
$rbn4^{1-90}-T18$	F-	GGGAATTCCCCAGCCCAGC	1_90				
	R-	GGTGCGTCGCTCCATCAGCATGTC	1-50				
rbn4 ⁷³⁻¹²⁴ – T18	F-	GG GGATCC GGAGAAGAAGGCCCAAGCCCG	73-124				
	R-	GGG GAATTC CCCGCACTCTTGCGGCTGTC	10 121				
M tuberculosis sigma	factor	r fusions to T25 in pKT25 and $rbpA$ fusions to T18 in pLIT18					
T25-sigA	F-	GG TCTAGA GGTGGCAGCGACCAAAGCAAG	1-528				
. <u>_</u> o o.g. (R-	GGG GAATTC TCAGTCCAGGTAGTCGCG CAG					
T25-sigA (σ_{a})	F-	GGTCTAGAGTCCGCCGACTCGGTTCGCGCC	224-364				
120 digit (02)	R-	GGG GAATTC TCAGCGGGCCTGGTCGGCCATGGCGC	221001				
T25-siaB	F-	CC TCTAGA GGCCGATGCACCCACAAGGGCCA	1-323				
o o.g_	R-	CCGAATTCCTGGCTCAGGATGTCCAGCT					
rbpA-T18	F-	GG GGATCC GATGGCTGATCGTGTCCTGAG	1-111				
	R-	GG GAATTC CCGCCGCGCCGACGTGACCGAATG					
(C) Protein overexpre	ssion						
S coelicolor proteins	001011						
$hrdB(\sigma_{1},\sigma_{2},\sigma_{3})$	F-	GGCATATGACCGCCGACCCGGTCAAGG	211-511				
m ub (02-04)	R-	GGAGATCTCTAGTCGAGGTAGTCGCGCAGC					
hrdB (ആ)	F-	GGCATATGACCGCCGACCCGGTCAAGG	211-347				
	R-	GGAGATCTTCAGCGCGCCTGGTCGGCCATC	211 047				
$hrdB(\sigma_{2}-\sigma_{2})$	F-	GGCATATGACCATCCGTATCCCGGTGCAC	348-511				
(03 04)	R-	GGAGATCTCTAGTCGAGGTAGTCGCGCAGC	510 011				
hrdB (a)	F-	GG CATATG AGCTTCACACTGCTGCAGGAGC	435-511				
	R-	GGAGATCTCTAGTCGAGGTAGTCGCGCAGC					
<i>M. tuberculosis</i> proteins							
rbpA	F-	GG CATATG GCTGATCGTGTCCTGAGG	1-111				

Table S2. Oligonucleotides used in this study

	R-	CC GGATCC CGGGTCAGCCGCGCCGACGTG					
siqA (σ ₂)	F-	GG CATATG TCCGCCGACTCGGTTCGCGCC 224-36					
0 (-/	R-	CC GGATCC CCATCAGCGGGCCTGGTCGGCCATGGC					
(D) Primers for in vitro transcription templates (distance from reverse primer to transcription start site							
indicated in parentheses)							
<i>atpl</i> (187 nt)	F	CGCAATACCAGACAAGTTGC					
	R	GCCGCGGGCACGGCAGCCTG					
<i>relAp1</i> (215 nt)	F	GGTCTGAACCACGCGAACCG					
	R	TTGGGGCGCGGCTGCTGCTC					
<i>sacAp</i> (200 nt)	F	GGCGTAGTGATGGCCGCACG					
	R	GTCGCCCACCTGCAGTGTGC					
<i>Tuf3p</i> (181 nt)	F	CCGCGCGGGAGGCGCTGCGG					
	R	AAGCCTCGTGGCGGTGGTGG					
<i>rplJp</i> (46 nt)	F	GGGAATTCGCGCCCGGCCCGCTCCGGTCGCCG					
	R	GGAAGCTTGTCCTCTTTCGAACACACGGCAACG					
(E) Primers for ChIP-qPCR of <i>rpIJ</i> promoter region							
rplJp_1	F	GCCGAGGCCGAGATGCAGAT					
	R	GCCCCCGATGTACATGGCCT					
rplJp_2	F	GTGAAGGTCACCGCCCCTCC					
	R	AAGCGTACGTGAACGGGGCA					
rplJp_3	F	CAGTCCTCCTTCGGGTCCGC					
	R	TGTCCGTCAGCTCGGCAACC					
rplJp_4	F	AAGGGCGGTGTCCTTGACGG					
	R	TTGAAGGCACCCGCCAGCTT					

Table S3. NMR and Refinement statistics

NMR and Refinement statistics	NMR and Refinement statistics						
NMR Distance and Dihedral Constraints	<i>M. tuberculosis</i> RbpA	S. coelicolor RbpA					
Distance constraints							
Total NOE	484	474					
Intraresidue	236	206					
Interresidue	248	268					
Sequential (<i>i-j</i>)=1)	101	74					
Medium range (<i>i-j</i>)<4)	9	14					
Long range (<i>i-j</i>)>5)	131	158					
Total Dihedral angle Restraints	82	82					
φ	41	41					
Ψ	41	41					
Structural Statistics							
Violations (mean and SD)							
Distance constraints (Å)	0.024 ± 0.007	0.026 ± 0.004					
Dihedral angle constraints (°)	0.19 ± 0.045	0.19 ± 0.056					
Maximum dihedral angle violation (°)	0.25	0.65					
Maximum distance constraint violation (Å)	0.167	0.26					
Deviations from idealized geometry							
Bond length (Å)	0.002 ± 0.000	0.003 ± 0.000					
Bond angle (°)	0.46 ± 0.007	0.46 ± 0.006					
Impropers (°)	0.24 ± 0.01	0.22 ± 0.01					
Average Pairwise rmsd ^a (Å)							
Heavy	0.884	0.942					
Backbone	0.377	0.517					

Figure S1. Mutational analysis of putative zinc ligands in *S. coelicolor* RbpA. Following site-directed mutagenesis *rbpA*, mutant genes were isolated as promoterless *Ndel-Bam*HI fragments and subcloned into pIJ6902, thereby placing them under control of the thiostrepton inducible promoter *tipAp*. The control plasmid pIJ6902::*rbpA* is equivalent to pSX528. Plasmids were introduced into *S. coelicolor* S101 (Δ *rbpA*::*hyg*) by conjugation and streaked to MS-agar plates plus 25 µg/ml thiostrepton. Plates were photographed after incubation for 4 days at 30°C. All strains grew poorly and formed small colonies in the absence of thiostrepton.

Figure S2. Overlay of the RCD domain of *S. coelicolor* RbpA with homologous domains from the following structures: Mini-chromosome maintenance complex, green, RMSD of 2.6Å over 36 equivalent C α atoms (12); ribosomal protein L27, orange, RMSD of 2.3Å over 38 equivalent C α atoms(13) polypeptide chain release factor, yellow, RMSD of 2.5Å over 39 equivalent C α atoms (14).

References

- 1. Kelemen, G.H., Plaskitt, K.A., Lewis, C.G., Findlay, K.C. and Buttner, M.J. (1995) Deletion of DNA lying close to the *glkA* locus induces ectopic sporulation in *Streptomyces coelicolor* A3(2). *Mol Microbiol*, **17**, 221-230.
- 2. Newell, K.V., Thomas, D.P., Brekasis, D. and Paget, M.S. (2006) The RNA polymerase-binding protein RbpA confers basal levels of rifampicin resistance on *Streptomyces coelicolor*. *Mol Microbiol*, **60**, 687-696.
- 3. Babcock, M.J., Buttner, M.J., Keler, C.H., Clarke, B.R., Morris, R.A., Lewis, C.G. and Brawner, M.E. (1997) Characterization of the rpoC gene of *Streptomyces coelicolor* A3(2) and its use to develop a simple and rapid method for the purification of RNA polymerase. *Gene*, **196**, 31-42.
- 4. Paget, M.S., Chamberlin, L., Atrih, A., Foster, S.J. and Buttner, M.J. (1999) Evidence that the extracytoplasmic function sigma factor sigmaE is required for normal cell wall structure in *Streptomyces coelicolor* A3(2). *J Bacteriol*, **181**, 204-211.
- 5. Studier, F.W. and Moffatt, B.A. (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. *J Mol Biol*, **189**, 113-130.
- 6. Paget, M.S., Hintermann, G. and Smith, C.P. (1994) Construction and application of streptomycete promoter probe vectors which employ the *Streptomyces glaucescens* tyrosinase-encoding gene as reporter. *Gene*, **146**, 105-110.
- 7. Alting-Mees, M.A. and Short, J.M. (1989) pBluescript II: gene mapping vectors. *Nucleic Acids Res*, **17**, 9494.
- 8. Karimova, G., Ullmann, A. and Ladant, D. (2001) Protein-protein interaction between *Bacillus stearothermophilus* tyrosyl-tRNA synthetase subdomains revealed by a bacterial two-hybrid system. *J Mol Microbiol Biotechnol*, **3**, 73-82.
- 9. Bierman, M., Logan, R., O'Brien, K., Seno, E.T., Rao, R.N. and Schoner, B.E. (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to *Streptomyces* spp. *Gene*, **116**, 43-49.
- 10. O'Connor, T.J., Kanellis, P. and Nodwell, J.R. (2002) The ramC gene is required for morphogenesis in *Streptomyces coelicolor* and expressed in a cell type-specific manner under the direct control of RamR. *Mol Microbiol*, **45**, 45-57.
- 11. Huang, J., Shi, J., Molle, V., Sohlberg, B., Weaver, D., Bibb, M.J., Karoonuthaisiri, N., Lih, C.J., Kao, C.M., Buttner, M.J. *et al.* (2005) Cross-regulation among disparate antibiotic biosynthetic pathways of *Streptomyces coelicolor. Mol Microbiol*, **58**, 1276-1287.
- 12. Fletcher, R.J., Bishop, B.E., Leon, R.P., Sclafani, R.A., Ogata, C.M. and Chen, X.S. (2003) The structure and function of MCM from archaeal M. Thermoautotrophicum. *Nat Struct Biol*, **10**, 160-167.
- 13. Wang, H., Takemoto, C.H., Murayama, K., Sakai, H., Tatsuguchi, A., Terada, T., Shirouzu, M., Kuramitsu, S. and Yokoyama, S. (2004) Crystal structure of

ribosomal protein L27 from *Thermus thermophilus* HB8. *Protein Sci*, **13**, 2806-2810.

14. Mantsyzov, A.B., Ivanova, E.V., Birdsall, B., Alkalaeva, E.Z., Kryuchkova, P.N., Kelly, G., Frolova, L.Y. and Polshakov, V.I. (2010) NMR solution structure and function of the C-terminal domain of eukaryotic class 1 polypeptide chain release factor. *FEBS J*, **277**, 2611-2627.