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The Human Hepatitis B Virus Enhancer Requires trans-Acting
Cellular Factor(s) for Activity
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The activity of the hepatitis B viral enhancer element was studied in various cell lines. This enhancer shows
strict host and tissue specificity in that it is functional only in liver cells of human origin. Further, it requires
trans-acting factor(s) present in liver cells for activity, and this activity is independent of hepatitis B virus gene

products in the cell lines tested.

The human hepatitis B virus (HBV) elicits acute and
chronic liver disease in humans and has been linked to
hepatocellular carcinoma (19, 26). Its narrow host range and
inability to grow in culture may be attributed to specific liver
tropism. One class of DNA regulatory elements, the enhanc-
ers, that exhibit tissue/host-specific action have been re-
ported in a number of viral genomes and cellular genes (1-3,
6, 9, 13). Enhancers are able to activate the transcription of
native as well as heterologous genes relatively independently
of distance and orientation with respect to the coding region
(2, 5, 16). HBV enhancer sequences were recently reported
in the region of nucleotides 1000 to 1250 on the HBV map,
about 400 base pairs upstream of the core promoter, between
the coding sequences of the surface antigen (HBsAg) gene
and the “*X’’ open reading frame (22). The contrast between
the weak core promoter activity in nonprimate or nonhepatic
cell types and the production of large amounts of core
antigen (HBcAg) during HBV infection in humans prompted
us to investigate the influence of HBV enhancer sequences
on this promoter. To quantitatively study the enhancer-
mediated activity of the core promoter, we used the assay-
able chloramphenicol acetyltransferase (CAT) system (7).
Such a system has been extensively used to study expression
under the control of heterologous promoters, enhancers, or
both (6, 7).

Figure 1 outlines the scheme of construction of the CAT
recombinant plasmids. Plasmid pCPCAT contains HBV
sequences between the Accl (nucleotide 1076) and Bglll
(nucleotide 1991) sites linked to the CAT gene. The HBV
fragment present in pCPCAT contains an uninterrupted
sequence that includes the HBcAg promoter (17) as well as
the enhancer (22). Plasmid pCPCAT-AE contains the
HBcAg promoter, but the enhancer sequences are deleted.
These plasmids were transfected and transiently expressed
in HepG2 human hepatoma cells (HBV negative) (10). The
result (Fig. 2A) shows a marked reduction in CAT activity
by the core promoter when the 5’ enhancer sequences were
removed. This suggests that the HBcAg promoter requires
upstream sequences for efficient expression. Similar results
were obtained in Hep3B human hepatoma cells (HBV posi-
tive) (10) (data not shown).

Enhancer sequences usually exhibit maximal activity in
their natural host cells and show tissue specificity (11).
Similarly, the HBV enhancer was previously shown to be
functionally active in a human hepatoma cell line
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(PLC/PRF/5) and not in CV-1 cells. However, since the PLC
cells contain at least seven integrated copies of HBV DNA
and constitutively secrete HBsAg (15, 23), the nature of the
interaction(s) of HBV enhancer sequences in liver cells
remains to be understood. To study the host and tissue
specificity of this enhancer, we compared the expression of
plasmid pCPCAT in various cell lines: rat fibroblasts (APB),
rat hepatoma cells (FaO, 4C2), mouse hepatoma cells
(HEPA-1), monkey kidney fibroblasts (CV-1), human fore-
skin fibroblasts (FS24), HeLa cells, and two human hepa-
toma cell lines, HepG2 and Hep3B. The human hepatoma
cell lines used in this study are physiologically identical for
at least a dozen markers, except that Hep3B contains
integrated HBV sequences and constitutively secretes
HBsAg, whereas HepG2 is devoid of HBV sequences and
therefore produces no viral markers (10). Different cell lines
were transfected with 20 pg of pCPCAT DNA using the
calcium phosphate coprecipitation method (7, 8), and cell
lysates were assayed for CAT activity (7) 48 h posttransfec-
tion. Results of the CAT expression in various cell lines are
summarized in Table 1 and shown in Fig. 2B. It is clear that
the HBV enhancer-mediated expression is markedly higher
in human cells of hepatic origin. All cell lines were indepen-
dently transfected with plasmid pSV2CAT (contains the
simian virus 40 [SV40] enhancer) as a control, which showed
maximal activity in CV-1 cells (Table 1). The HBV enhancer
exhibits preferential expression in human liver cells but not
in nonhuman liver cells (FaO, 4C2, and HEPA-1 cells; Fig.
2B and Table 1) nor in human cells of nonhepatic origin
(FS24 and HelLa cells; Fig. 2B and Table 1).

The presence and expression of HBV sequences in the
hepatoma cell line and their role in trans-activation of the
HBV enhancer appear to be neutral since no significant
difference in pCPCAT expression was found between
HepG2 and Hep3B human hepatomas (Fig. 2B). To confirm
this result using an independent approach, we cotransfected
HepG?2 cells with pPCPCAT and with plasmid vectors capable
of expressing HBV gene products. Plasmids pNEP and
pNET contain the genome-length HBV (adw2) DNA cleaved
at Apal (nucleotide 2412) and Tagl (nucleotide 2020) sites,
respectively, inserted in pML-neo (pML-neo was con-
structed by inserting the neomycin gene in plasmid pML
[14]) and express HBsAg (A. Siddiqui, S. Jameel, and J.
Mapoles, Proc. Natl. Acad. Sci. USA, in press). Plasmid
pNEC contains a 1.85-kilobase BamHI fragment of HBV
(nucleotides 1407 to 34), also in pML-reo, and expresses
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FIG. 1. Construction of recombinant plasmids. Plasmid pSH6 (24), which contains the 2.8-kilobase Bg/II fragment of HBV in pSV010 (12),
was cleaved with Accl and HindIII to isolate a 0.93-kilobase HBV fragment (map position, nucleotides 1076 to 1991). This fragment,
containing the HBV enhancer (en) and the HBcAg promoter (cp), was inserted upstream of either the CAT gene or the neo gene to yield
pCPCAT or pCPNEO, respectively. The CAT and neo genes were part of plasmids pSV2CAT and pSV2NEO, respectively, and contain the
SV40 t splice and polyadenylation sequences 3’ to the coding region (7, 25). Both pSV2CAT and pSV2NEO were cleaved with Accl and
HindlII to remove the SV40 ori sequences before the HBV 0.93-kilobase fragment was inserted. Plasmid pCPCAT-AE was constructed by
digesting pCPCAT with Accl and SstII (HBV map position, nucleotides 1076 to 1458), which deletes the enhancer sequences, leaving the
HBcAg promoter 5’ to the CAT gene. A, Accl; B, BamHI; Bg, Bglll; H, Hindlll; S, Sst11.

HBc/eAg (M. Roossinck, S. Jameel, S. H. Loukin, and A.
Siddiqui, submitted for publication).

HepG2 cells were contransfected with pCPCAT and an
excess of the HBV plasmid vectors (a 3.6-fold molar excess
of pNEP or pNET; a 4.3-fold molar excess of pNEC). No
further stimulation of CAT expression was seen as a result of
this cotransfection (Fig. 2C). When tested (18), the extracts
showed the presence of neomycin phosphotransferase activ-
ity, suggesting that cells had received the pML-neo-based

HBYV plasmid vectors (data not shown). The culture super-
natants were also subjected to commercial radioimmunoas-
says (RIAs; Abbott Laboratories) which detect HBsAg or
HBc/eAg (Fig. 2C). Taken together, these results show that
neither the presence nor the expression of HBV sequences
mediates activation of the HBV enhancer element. We
further confirmed this result by transient expression of
plasmid pCPCAT in stably transformed rat cells continually
expressing either HBsAg and X or HBcAg (data not shown).
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FIG. 2. (A) CAT activity of HepG2 cells transfected with either pPCPCAT-AE or pCPCAT DNA. Fold stimulation was normalized with
respect to pCPCAT-AE expression. (B) CAT activity of CV-1, FS24, HepG2, Hep3B, and FaO cells transfected with pCPCAT DNA. Fold
stimulation was normalized with respect to pCPCAT expression in CV-1 cells. (C) CAT activity in HepG2 cells cotransfected with 3.5 pg of
pCPCAT DNA and 21.5 pg of either pML-neo, pNEP, pNET, or pNEC DNA. The RIA positive/negative (P/N) ratios are for 48 h
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The CAT expression by pCPCAT in these cell lines was
similar to that seen in untransformed rat cells.

For some enhancers, the cell type specificity has been
attributed to a specific interaction(s) between the enhancer
and one or more factors present in the specific cells (20, 21).
To determine whether such cell-specific molecules or factors
exist in liver cells and interact with the HBV enhancer, we
carried out an in vivo titration study (21). The minimum
amount of pPCPCAT DNA required for optimal expression in
HepG2 cells was found to be 1 pmol (3.5 ug) (Fig. 3A).
Plasmid pCPCAT showed low expression in the presence of
0.56 pmol (2.0 ng), followed by increased expression with
increasing amounts of specific DNA used; the CAT signal
leveled off beyond about 2 pmol (7.0 pg) of DNA, suggesting
a saturation phenomenon. Although this is not the only
explanation, this saturation could be caused by limiting
amounts of cellular factor(s) required for enhancer activity.
If this is true, it should be possible to titrate out such a
cellular factor(s) by using a competitor plasmid that contains
the same transcriptional control signals (enhancer-promoter
unit) as pCPCAT but encodes a different activity. For this
we used the plasmid pCPNEO (Fig. 1). One picomole (3.5
rg) of pCPCAT DNA was cotransfected with increasing
amounts of pCPNEO DNA into HepG2 cells. The total
amount of DNA used per transfection was kept constant
with pBR322 DNA. Figure 3B shows that increasing
amounts of pCPNEO decreased the CAT signal obtained
from a constant amount of pCPCAT. The possibility that
decreased CAT expression was due to decreased DNA
uptake was eliminated by assaying for neomycin phospho-
transferase activity in cell extracts. Plasmid pCPNEO
showed a dose response similar to that of pPCPCAT in HepG2
cells. To ascertain whether the factor present in HepG2 cells
is specific for the HBV enhancer or for a variety of other
enhancer sequences as well, we carried out the competition
with heterologous enhancers. When plasmid pSV2NEO,
which contains the SV40 enhancer, was used as the compet-
itor DNA, a reduction in the CAT was seen, although not as
much as with pPCPNEO (Fig. 3B). A similar reduction in the
CAT signal was also seen with plasmid pRSVNEO, which
contains the Rous sarcoma virus long terminal repeat (data
not shown). These results, taken together with the saturation
effect seen with increasing amounts of pPCPCAT DNA, point
towards an interaction between the HBV enhancer and a
factor(s) present in human liver cells. Although the nature of
this interaction is not limited to the HBV enhancer, there
appears to be a higher degree of specificity for these se-
quences as compared to heterologous enhancers, i.e., SV40
and Rous sarcoma virus. Whether the factor(s) responsible
belongs to a class of transcription factors that interact
specifically with enhancer sequences remains to be deter-
mined.

The present study clearly demonstrates the interaction of
a trans-acting cell-specific factor(s) with the HBV enhancer
element. This enhancer is required for efficient transcription
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TABLE 1. CAT activity in cells after transfection with pCPCAT,
pCPCAT-AE, and pSV2CAT DNA

CAT activity?
Cell line Origin
pCPCAT pCPCAT-AE pSV2CAT

CV-1 Monkey kidney (+) ND ++
(epithelial)

FS24 Human foreskin - ND ND
fibroblasts

HeLa Human cervix - - +
carcinoma

HepG2 Human hepatoma, + + + + +
HBYV negative

Hep3B Human hepatoma, + + + - +
HBYV positive

PLC/PRF/S Human hepatoma, ++ ND +
HBYV positive

APB Rat fibroblasts + NA +

Fa0 Rat hepatoma - NA +

4C2 Rat hepatoma + ND +

HEPA-1 Mouse hepatoma + - +

“ The percentage of acetylated chloramphenicol in CV-1 cells transfected
with pPCPCAT DNA was taken as the denominator, and enhancement factors
were calculated accordingly. +, No enhancement; + +, two to five-fold
enhancement; + + +, greater than fivefold enhancement; —, less than de-
nominator; NA, no detectable activity; ND, not done.

from the HBcAg promoter, in agreement with earlier obser-
vations (22). Other work from our laboratory involving the
expression of the HBcAg gene under its natural transcrip-
tional controls also supports this observation (Roossinck et
al., submitted). When plasmids pNEC and pCEN (pCEN
contains a Hpal-to-EcoRlI fragment of HBV that includes 5’
flanking enhancer sequences, whereas pNEC lacks the en-
hancer) were transiently expressed in HepG2 cells, the latter
showed at least 10- to 15-fold higher expression of HBc/eAg
compared to the former. Thus, the reporter CAT gene used
in our experiments supports the interpretation regarding
natural transcriptional controls of the HBcAg gene. Further-
more, the enhancer element may regulate the synthesis of
longer than genome-length pregenomic RNA species which
have been found to be transcribed from the HBcAg promoter
in infected livers (4). The presence of a cellular factor(s) in
liver cells with affinity for and the capability to zrans-activate
the HBV enhancer may explain the hepatotropism of this
virus. This may also provide a model for the role of HBV in
establishing primary hepatocellular carcinoma in humans.
Although infection by HBV has been suggested as an impor-
tant event in the development of this disease, a definite
mechanism by which HBV mediates oncogenesis remains to
be established (27). None of the viral genes has been shown
to be linked with a transformation function. It has been
proposed that the transforming potential of certain leukemia
viruses that lack oncogenes is due to enhancer-mediated
activation of cellular genes (13). A recent report has corre-

posttransfection culture supernatants. Each assay contained 0.5 mg of protein (BioRad assay) and was carried out for 2 h at 37°C. After
separation of the reaction products by ascending thin-layer chromatography (0.2-mm silica gel) and visualization by autoradiography (Kodak
XAR-S film), the assay was quantitated by counting regions of the gel containing unacetylated [*C]chloramphenicol (cm) and its 1-acetate (a)
and 3-acetate (b) forms. The RIAs were carried out with an Ausria II RIA kit for HBsAg and a similar kit for HBeAg (Abbott Laboratories).
Before the RIA, culture supernatants were clarified by centrifugation at 12,000 X g for 30 min. For HBsAg RIA, the particles were pelleted
in a Beckman SW 55 rotor at 45,00 rpm for 4 h and the pellets were resuspended in 350 pl of phosphate-buffered saline (per 100-mm plate),
of which 200 pl was used for the RIA. For HBc/eAg RIA, the clarified supernatants were concentrated 35-fold with an Amicon YM-2 filter
and 200 pl was used for the RIA. The controls included HBsAg-positive/negative (P/N = 30.9) and HBc/eAg-positive/negative (P/N = 4.9)

human plasma samples.
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FIG. 3. Competition assay for enhancer activity. (A) CAT activity of HepG2 cells transfected with increasing amounts of pPCPCAT DNA.
(B) CAT activity of HepG?2 cells cotransfected with 1 pmol (3.5 pg) of pPCPCAT DNA (Test DNA) and increasing amounts of competitor
DNA: pCPNEO (®) or pSV2NEO (O). The titrations were carried out as described by Scholer and Gruss (21), except that all transfections
were carried out with 25 ug of total DNA made up with pBR322. The relative CAT activities were normalized to a transfection containing
1 pmol (3.5 pg) of pPCPCAT DNA and 21.5 pg of pBR322 DNA (acetylated [**C]chloramphenicol, 56.1%). In one case when 11.6 pmol of
pCPNEO was used, the total amount of DNA in the transfection was 50 ug. The CAT activity for this was normalized with respect to a
transfection containing 1 pmol (3.5 pg) of pCPCAT DNA and 46.5 pg of pBR322 DNA (acetylated [**C]chloramphenicol, 45%).

lated the enhancer activity with the oncogenic potential of
certain avian retroviruses (28). Although it is probable, it
remains to be determined whether the HBV enhancer can
mediate hepatocarcinogenesis by this mechanism.
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