### 1 Supporting Online Material

| 2 | Rational | design | of | a | novel | propeptide | for | improving | active |
|---|----------|--------|----|---|-------|------------|-----|-----------|--------|
|---|----------|--------|----|---|-------|------------|-----|-----------|--------|

## 3 production of *Streptomyces griseus* trypsin in *Pichia pastoris*

- 4
- 5 Zhenmin Ling<sup>a, b</sup>, Yi Liu<sup>a, b</sup>, Shaolei Teng<sup>c</sup>, Zhen Kang<sup>a, b\*</sup>, Jingjing Zhang<sup>b</sup>, Jian Chen<sup>b, d</sup> and

6 Guocheng Du<sup>b, e\*</sup>

7 <sup>a</sup>The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi

8 214122, China

- 9 <sup>b</sup>School of Biotechnology, Jiangnan University, Wuxi 214122, China
- <sup>10</sup> <sup>c</sup>Department of Genetics & Biochemistry, Clemson University, Clemson, South Carolina, U. S. A.
- <sup>11</sup> <sup>d</sup>National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi
- 12 214122, China
- <sup>13</sup> <sup>e</sup>The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan
- 14 University, Wuxi 214122, China
- 15 \*Corresponding authors:
- 16 Zhen Kang, Address: School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122,
- 17 China, Tel: +86-510-85918307, Fax: +86-510-85918309, E-mail: zkang@jiangnan.edu.cn.
- 18 Guocheng Du, Address: School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi
- 19 214122, China, Tel: +86-510-85918309, Fax: +86-510-85918309, E-mail: gcdu@jiangnan.edu.cn.
- 20
- 21 Running title: Rational design of a propeptide for trypsin production
- 22
- 23
- 24
- 25
- 26
- ----
- 27
- 28

TABLE S1 Strains and plasmids used in this study

| Strains and plasmids         | Genotype and characteristics                                    | Reference  |
|------------------------------|-----------------------------------------------------------------|------------|
| Strains                      |                                                                 |            |
| S. griseus ATCC $10137^{TM}$ | Streptomyces griseus subsp. griseus                             | (1)        |
| P. pastoris GS115            | his4 $\operatorname{Mut}^+\operatorname{His}^-(aox1^+,aox2^+),$ | (2)        |
| E. coli JM109                | $F' traD36 proA^+B^+ lacIq \Delta(lacZ)M15/\Delta(lac-proAB)$   | Lab stock  |
| Exmt                         | P. pastoris GS115 harboring pPIC9k-Exmt                         | This study |
| ExAPNPmt                     | P. pastoris GS115 harboring pPIC9k-ExAPNPmt                     | This study |
| ExPNPmt                      | P. pastoris GS115 harboring pPIC9k-ExPNPmt                      | This study |
| ExNPmt                       | P. pastoris GS115 harboring pPIC9k-ExNPmt                       | This study |
| ExPmt                        | P. pastoris GS115 harboring pPIC9k-ExPmt                        | This study |
| ExYmt                        | P. pastoris GS115 harboring pPIC9k-ExYmt                        | This study |
| APNPmt                       | P. pastoris GS115 harboring pPIC9k-APNPmt                       | This study |
| Pmt                          | P. pastoris GS115 harboring pPIC9k-Pmt                          | This study |
| mt                           | P. pastoris GS115 harboring pPIC9k-mt                           | This study |
| RIRImt                       | P. pastoris GS115 harboring pPIC9k-RIRImt                       | This study |
| YVERmt                       | P. pastoris GS115 harboring pPIC9k-YVERmt                       | This study |
| YVEImt                       | P. pastoris GS115 harboring pPIC9k-YVEImt                       | This study |
| RVEFmt                       | P. pastoris GS115 harboring pPIC9k-RVEFmt                       | This study |
| IVEFmt                       | P. pastoris GS115 harboring pPIC9k-IVEFmt                       | This study |
| Plasmids                     |                                                                 |            |
| pPIC9k                       | HIS4 Amp <sup>r</sup> or Kan <sup>r</sup>                       | (2)        |
| pPIC9k-Exmt                  | pPIC9k inserted of fragment Exmt                                | This study |
| pPIC9k-ExAPNPmt              | pPIC9k inserted of fragment ExAPNPmt                            | This study |
| pPIC9k-ExPNPmt               | pPIC9k inserted of fragment ExPNPmt                             | This study |
| pPIC9k-ExNPmt                | pPIC9k inserted of fragment ExNPmt                              | This study |
| pPIC9k-ExPmt                 | pPIC9k inserted of fragment ExPmt                               | This study |
| pPIC9k-ExYmt                 | pPIC9k inserted of fragment ExYmt                               | This study |
| pPIC9k-APNPmt                | pPIC9k inserted of fragment APNPmt                              | This study |
| pPIC9k-Pmt                   | pPIC9k inserted of fragment Pmt                                 | This study |
| pPIC9k-mt                    | pPIC9k inserted of fragment mt                                  | This study |
| pPIC9k-RIRImt                | pPIC9k inserted of fragment RIRImt                              | This study |
| pPIC9k-YVERmt                | pPIC9k inserted of fragment YVERmt                              | This study |
| pPIC9k-YVEImt                | pPIC9k inserted of fragment YVEImt                              | This study |
| pPIC9k-RVEFmt                | pPIC9k inserted of fragment RVEFmt                              | This study |
| pPIC9k-IVEFmt                | pPIC9k inserted of fragment IVEFmt                              | This study |

# TABLE S2 Primers used in this study

| Primers              | Sequence $(5' \rightarrow 3')$                                                     |
|----------------------|------------------------------------------------------------------------------------|
| Exmt-5'              | CCG <u>GAATTC</u> GTCGTCGGCGGAACCC                                                 |
| ExAPNPmt-5'          | CCG <u>GAATTC</u> GCTCCAAACCCAGTCGTCGGCGGAACCC                                     |
| ExPNPmt-5'           | CCG <u>GAATTC</u> CCAAACCCAGTCGTCGGCGGAACCC                                        |
| ExNPmt-5'            | CCG <u>GAATTC</u> AACCCAGTCGTCGGCGGAACCC                                           |
| ExPmt-5'             | CCG <u>GAATTC</u> CCAGTCGTCGGCGGAACCC                                              |
| ExYmt-5'             | CCG <u>GAATTC</u> TACGTCGTCGGCGGAACCC                                              |
| αF-5'                | CG <u>GGATCCAAACG</u> ATGAGATTTCCTTCAATTTTTACTGC                                   |
| APNPmt-5'            | AGTTTCAGCCTCTCTTTTCTCGGCTCCAAACCCAGTCGTCGGCGGAACCC                                 |
| αF-APNPmt-3'         | GGGTTCCGCCGACGACTGGGTTTGGAGCCGAGAAAAGAGAGGCTGAAGCT                                 |
| Pmt-5'               | AGTTTCAGCCTCTCTTTTCTCGCCAGTCGTCGGCGGAACCC                                          |
| aF-Pmt-3'            | GGGTTCCGCCGACGACTGGCGAGAAAAGAGAGGGCTGAAGCT                                         |
| mt-5'                | AGTTTCAGCCTCTCTTTTCTCG GTCGTCGGCGGAACCC                                            |
| αF-mt-3'             | GGGTTCCGCCGACGACCGAGAAAAGAGAGAGGCTGAAGCT                                           |
| RIRImt-5'            | AGTTTCAGCCTCTCTTTTCTCGAGAATTAGAATTGTCGTCGGCGGAACCC                                 |
| αF-RIRImt-3'         | GGGTTCCGCCGACGACAATTCTAATTCTCGAGAAAAGAGAGGCTGAAGCT                                 |
| YVERmt-5'            | AGTTTCAGCCTCTCTTTTCTCGTACGTTGAAAGAGTCGTCGGCGGAACCC                                 |
| αF-YVERmt-3'         | GGGTTCCGCCGACGACTCTTTCAACGTACGAGAAAAGAGAGGCTGAAGCT                                 |
| YVEImt-5'            | AGTTTCAGCCTCTCTTTTCTCGTACGTTGAAATTGTCGTCGGCGGAACCC                                 |
| αF-YVEImt-3'         | GGGTTCCGCCGACGACAATTTCAACGTACGAGAAAAGAGAGGCTGAAGCT                                 |
| RVEFmt-5'            | AGTTTCAGCCTCTCTTTTCTCGAGAGTTGAATTTGTCGTCGGCGGAACCC                                 |
| $\alpha$ F-RVEFmt-3' | GGGTTCCGCCGACGACAAATTCAACTCTCGAGAAAAGAGAGGGCTGAAGCT                                |
| IVEFmt-5'            | AGTTTCAGCCTCTCTTTTCTCGATTGTTGAATTTGTCGTCGGCGGAACCC                                 |
| αF-IVEFmt-3'         | GGGTTCCGCCGACGACAAATTCAACAATCGAGAAAAGAGAGGGCTGAAGCT                                |
| * mt-3'              | ATAAGAAT <u>GCGGCCGC</u> TCAGAGCGTGCGGGCGG                                         |
| AOX primer-5'        | GACTGGTTCCAATTGACAAGC                                                              |
| AOX primer-3'        | TCCTACAGTCTTACGGTAAACGG                                                            |
| mt-3' was used as    | s the downstream primer for all the recombinant trypsins or trypsinogens; The base |

\* mt-3' was used as the downstream primer for all the recombinant trypsins or trypsinogens; T
underlined means the restriction enzyme sites; The base in bold means the Kozark sequence.

ч.

46

33

| Mutants    | Residues | H-bonds | Ion pairs | π-interactions | Secondary structure % |         |       |       |
|------------|----------|---------|-----------|----------------|-----------------------|---------|-------|-------|
| Withtuints |          |         |           |                | α-helix               | β-sheet | turn  | coil  |
| SGT        | 223      | 620     | 11        | 1              | 10.3%                 | 39.9%   | 21.1% | 28.7% |
| Exmt       | 227      | 312     | 8         | 5              | 8.0%                  | 25.7%   | 17.3% | 49.1% |
| ExAPNPmt   | 231      | 306     | 9         | 4              | 5.2%                  | 22.2%   | 17.0% | 55.7% |
| ExPNPmt    | 230      | 147     | 0         | 0              | 7.0%                  | 26.1%   | 14.3% | 52.6% |
| ExNPmt     | 229      | 123     | 1         | 4              | 7.0%                  | 25.8%   | 11.8% | 55.5% |
| ExPmt      | 228      | 126     | 0         | 1              | 5.7%                  | 25.0%   | 15.4% | 53.9% |
| ExYmt      | 228      | 164     | 3         | 4              | 8.8%                  | 25.4%   | 17.5% | 48.2% |
| APNPmt     | 227      | 113     | 2         | 0              | 8.4%                  | 26.0%   | 10.6% | 55.1% |
| Pmt        | 224      | 120     | 3         | 0              | 4.9%                  | 29.0%   | 9.8%  | 56.3% |
| RIRImt     | 227      | 163     | 5         | 5              | 8.8%                  | 27.8%   | 17.6% | 45.8% |
| YVERmt     | 227      | 165     | 8         | 4              | 8.8%                  | 26.4%   | 17.6% | 47.1% |
| YVEImt     | 227      | 159     | 6         | 6              | 8.8%                  | 27.3%   | 17.6% | 46.3% |
| RVEFmt     | 227      | 174     | 6         | 4              | 8.8%                  | 26.4%   | 17.6% | 47.1% |

8.8%

25.6%

17.6% 48.0%

C 41. TADIE CO **C** 1 

IVEFmt

FIG S1 PCR confirmation of the integrated transformants with AOX primer-5' and AOX
primer-3'. (A) Confirmation of the trypsin mutants with the native propeptide and its stepwise
deletion mutants. (B) Confirmation of the trypsin mutants with designed propeptides.



### 104 **Construction of the recombinant vectors**

105 *Streptomyces griseus* ATCC 10137 was purchased from the American Type Culture 106 Collection and used for amplification of the trypsin gene. *Pichia pastoris* GS115 and the 107 chromosome-integrated vector pPIC9k both were purchased commercially (Invitrogen, San Diego, 108 CA, USA). The liberated inserts and digested expression vectors were electrophoresed and 109 recovered using Agarose Gel DNA Purification Kit Ver.2.0 (TaKaRa, Dalian, China). The 110 recombinant vectors were confirmed by sequencing using primers AOX primer-5' and AOX 111 primer-3' (Table S2).

112 Oligonucleotides Exmt-5'/mt-3', ExAPNPmt-5'/mt-3', ExPNPmt-5'/mt-3', ExNPmt-5'/mt-3', ExPmt-5'/mt-3' and ExYmt-5'/mt-3' (Table S2) were used for amplification and construction of 113 114 recombinants Exmt, ExAPNPmt, ExPNPmt, ExPNPmt, ExPMt and ExYmt (Table S1), respectively. 115 After digesting by EcoRI and NotI, the fragments were subcloned into pPIC9k (Fig. 1B). For 116 construction of the recombinants APNPmt, Pmt, mt, RIRImt, YVERmt, YVEImt, RVEFmt and 117 IVEFmt (Table S1), the  $\alpha$ -factor signal peptide was welded by the fusion PCR method. After 118 successful assembly, the recombinant fragments were digested with BamHI and NotI and 119 subcloned into pPIC9k to generate the correspoding plasmids (Table S1).

## 120 **Purification and SDS-PAGE analysis**

121 All the trypsin mutants were purified by affinity chromatography. After centrifugation at 122 8,000 rpm for 10 min, the culture supernatant was concentrated and was further precipitated with 123 25-55% ammonium sulfate. The sediment was resuspended in 5 ml of buffer A (10 mM Tris-HCl, pH 8.0, 10% glycerol, and 1 mM EDTA) and dialyzed overnight against 100 ml buffer A. The 124 125 sample was loaded onto a Hitrap benzamidine FF column ( $\Phi$ 1.6×2.5 cm, GE Healthcare, catalog number 17-5144-01) previously equilibrated with buffer A, and the column was washed with 126 127 buffer B (10 mM NaOAc, pH 5.0, 10% glycerol, 1 mM EDTA, and 0.5M NaCl). After that, 10 µl 128 ultrafiltrated purified enzymes supernatant were loaded onto the gel by SDS-PAGE analysis and 129 the single bands showed in the pictures are the recombinant trypsins.

#### 130 **Determination of trypsin activity**

131 Trypsin activity was measured spectrophometrically as the release of *p*-nitroaniline by 132 enzymatic hydrolysis of the artifical substrate  $N_{\alpha}$ -benzoyl-DL-arginine-*p*-nitroanilide (BAPNA). 133 Briefly, samples (100 µl) were mixed with 800 µl of assay buffer (50 mM Tris-HCl, pH 8.0; 0.02

- 134 M CaCl<sub>2</sub> at 37°C) and 100 µl 0.1 M BAPNA. The change in absorbance at 410 nm was recorded
- 135 by spectrophotometer (UV-2450 PC, Shimadzu). One BAPNA unit (U ml<sup>-1</sup>) trypsin was defined
- 136 as the amount of enzyme required for producing an absorbance increase of 0.1 under the above
- 137 conditions. Trypsin activity was calculated according to Eq. (1) \* df-dilution factor
  - BAPNA unit (Uml<sup>-1</sup>) =  $\frac{\Delta A_{410} / \text{min} \times (\text{df})}{(0.1)}$  (1)
- 138

139

140

## 141 SUPPLEMENTARY REFERENCES

- 142 1. Kim JC, Cha SH, Jeong ST, Oh SK, Byun SM. 1991. Molecular cloning and nucleotide sequence of *Streptomyces griseus* trypsin gene. Biochem. Biophys. Res. Commun. 144 181:707-713.
- Cereghino JL, Cregg JM. 2000. Heterologous protein expression in the methylotrophic yeast
   *Pichia pastoris*. FEMS Microbiol. Rev. 24:45-66.
- 147