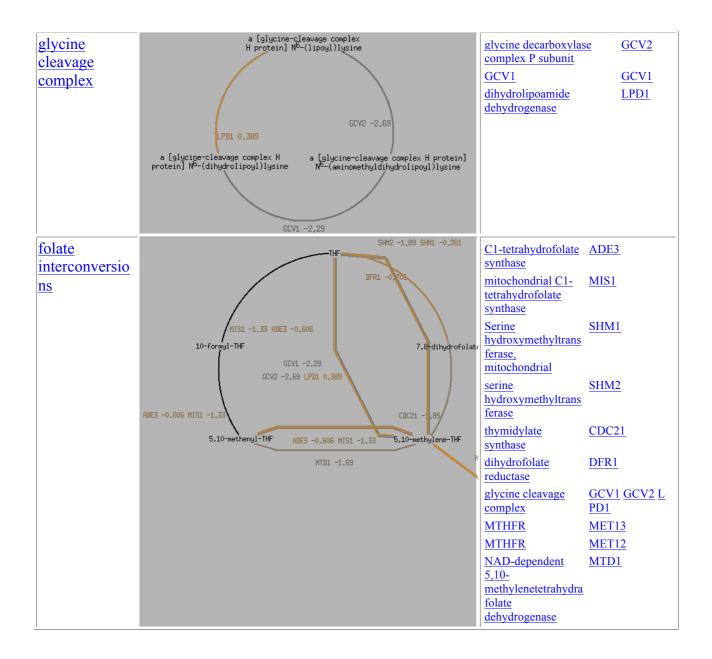

Supplementary information File 1 (SI File 1)

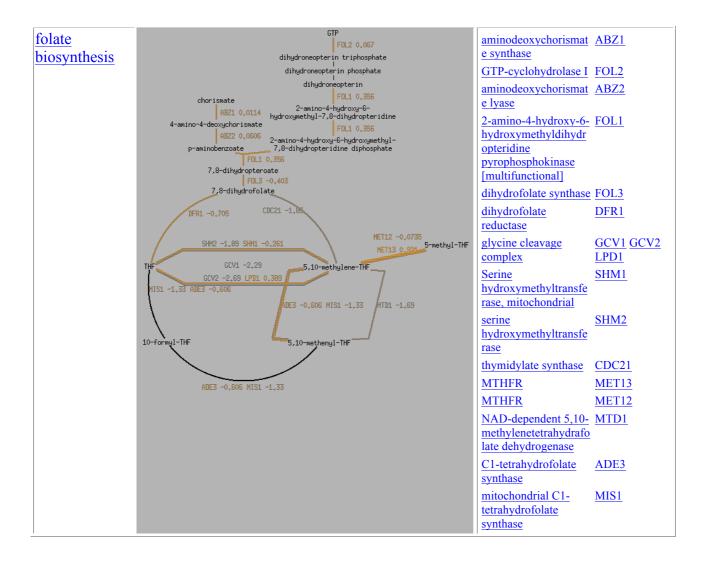
Title: Physiological and transcriptional response to *d*-limonene in *Saccharomyces cerevisiae* shows changes to the cell wall, not the plasma membrane

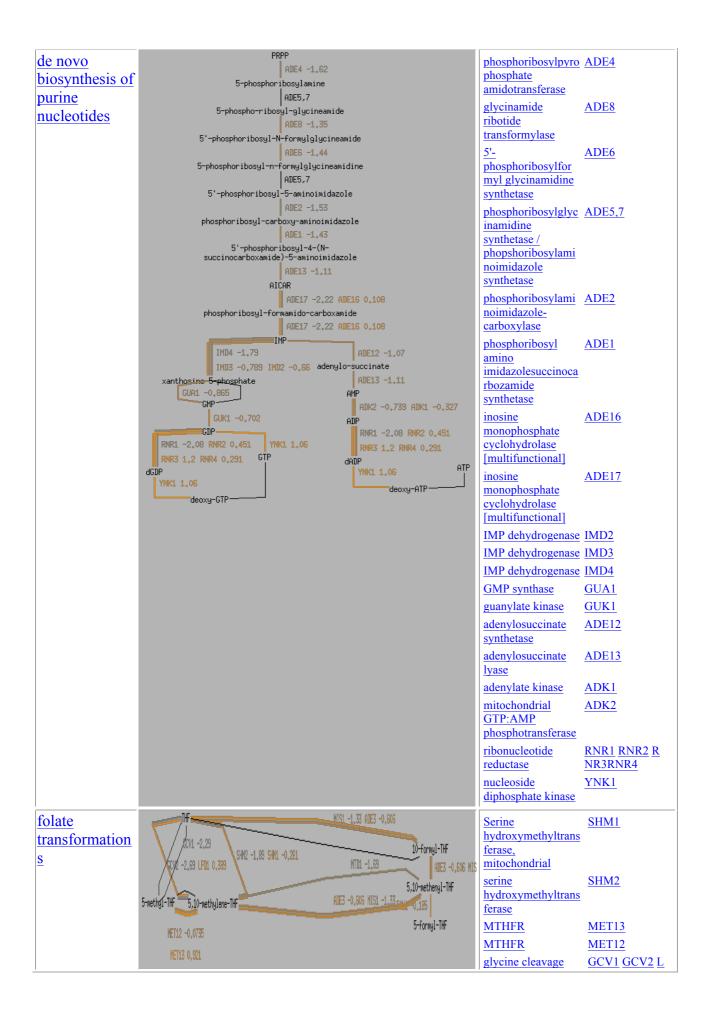
Authors: Timothy C. R. Brennan¹, Jens O. Krömer²#, Lars K. Nielsen¹

SI Fig 1. Metabolic map of entire transcriptome dataset.

Total number of data rows (not including comment lines): 10563 Number of rows for which the gene could not be found: 9804 Number of rows for which the gene name was ambiguous: 0 Number of rows for which the gene is valid, but for which a data value was missing or malformed: 0

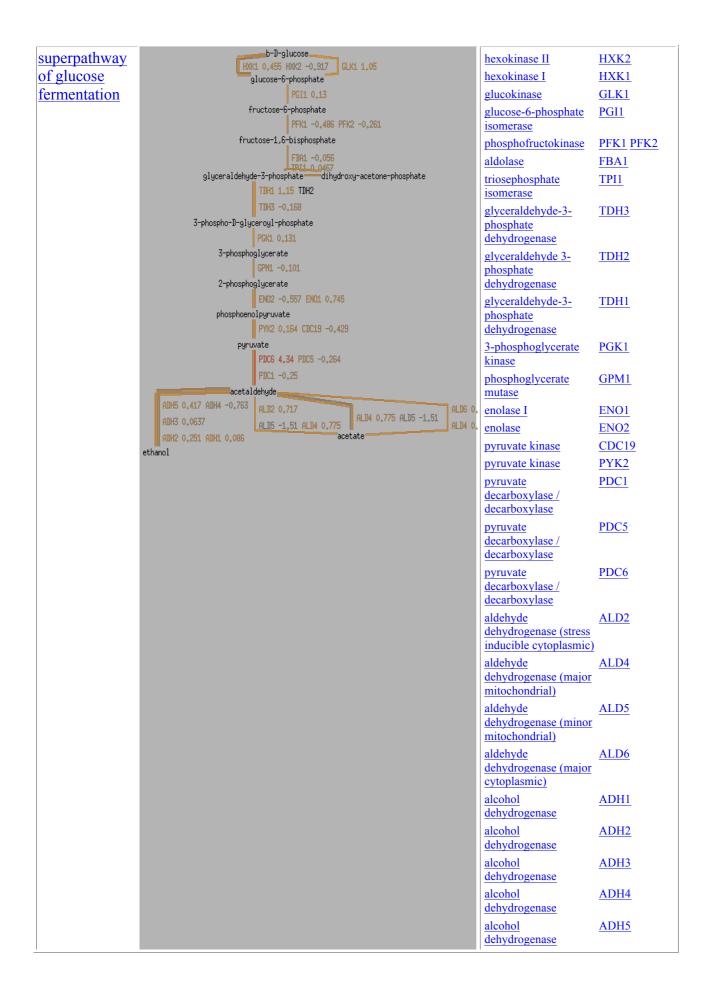

The table below shows statistics for the selected column/column ratio for all genes and for those genes that appear in the Overview (or in any of the selected overviews, if multiple were selected).


Data Statistics	All Genes	Overview Genes
Number of values:	759	619
Minimum value:	-3.037	-3.037

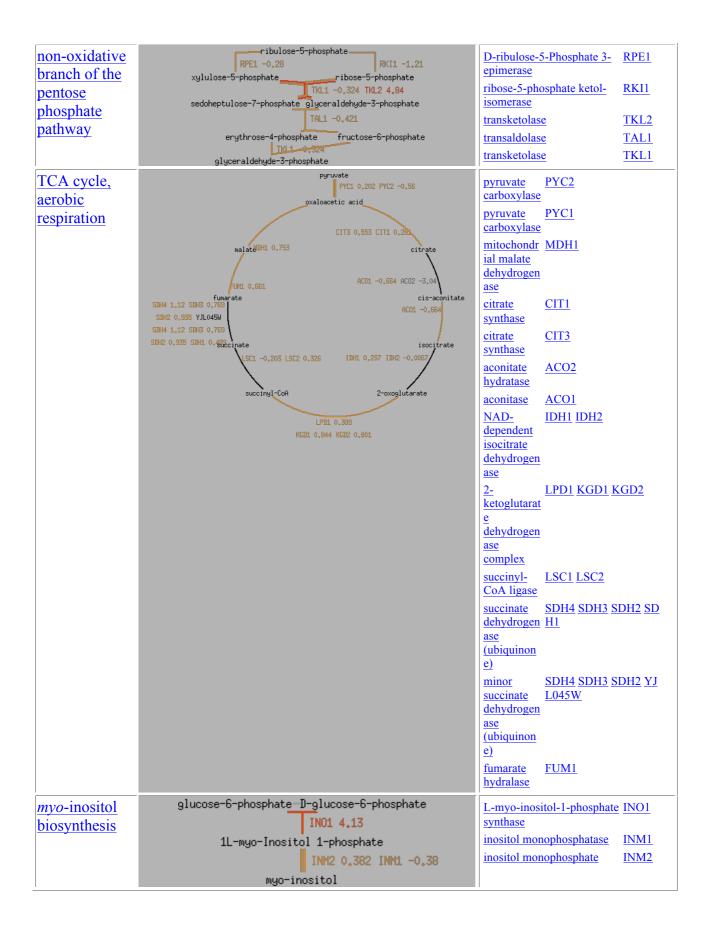

Maximum value:	5.5071	5.5071
Median:	-0.0144	0.032449998
Mean:	-0.0021671697	0.019628845
Standard deviation:	0.9757149	1.027266

SI Table 1. Metabolic pathway analysis of exposure to limonene. Values are log_2 treatment/control ratio and only pathways exceeding threshold value of ± 2 are shown.

Pathway	Pathway Diagram	Enzymes, Genes, and Enzyme Cellular Locations
<u>lysine</u> <u>biosynthesis</u>	2-oxoglutarate LYS21 -1,65 LYS20 -2,01 homocitrate LYS4 -2,22 Homoaconitate LYS4 -2,22 homo-isocitrate LYS12 -1,92 a-ketoadipate L-2-Aminoadipate LYS2 -2,02 L-2-Aminoadipate LYS2 -2,58 saccharopine LYS1 -2,21	homocitrate synthaseLYS2 0homocitrate synthaseLYS21homoaconitaseLYS4homo-isocitrateLYS1dehydrogenase2alpha aminoadipate reductaseLYS2saccharopine dehydrogenaseLYS9(NADP+, L-glutamate-forming)LYS1saccharopine dehydrogenaseLYS1(NAD+, L-lysine-forming)LYS1
arginine biosynthesis	L-lysine N-acetylglutanyl-phosphate ARG5,6 L-glutanate L-glutanine CPA1 -0,846 CPA2 -1,31 carbanoyl-phosphate L-arginine ARG3 -3,02 N-a-acetylornithine citrulline ARG4 -0,805 L-arginine	ornithine carbamoyltransferaseARG3acetylornithine aminotransferaseARG8aminotransferaseARG5,6acetylglutamate kinase / N-acetyl- gamma-glutamyl- phosphate reductaseARG5,6carbamoyl phosphate synthetaseCPA1 CPA2acetylglutamate synthetaseARG2acetylglutamate synthetaseARG2acetylornithine acetyltransferaseARG7acetylornithine acetyltransferaseARG1arginosuccinate synthetaseARG4


	nalate	complexPD1NAD-dependentMTD5,10-MTDmethylenetetrahydrafolatedehydrogenasemitochondrial C1-mitochondrial C1-MIS1tetrahydrofolatesynthaseC1-tetrahydrofolateADE2synthase5,10-methenyltetrahydrofFAU2olate synthetasesynthetase	<u>3</u>
<u>gluconeogenes</u> <u>is</u>	HRE1 -1,56 HDH2 1,07 PYCL 0,202 PYC2 -0.56 pyruvate oxaloacetic acid PCK1 3,27 phosphoenolpyruvate ENO2 -0,557 ENO1 0,745 2-phosphoglycerate GPH1 -0,101 3-phospho-D-glyceroyl-phosphate TDH1 1,15 TDH2 TDH3 -0,168 dihydroxy-acetone-phosphate FBA1 -0,056 fructose-1,6-bisphosphate FBA1 -0,056 fructose-6-phosphate PGI1 0,13 glucose-6-phosphate	malic enzyme pyruvate carboxylase pyruvate carboxylase cytosolic malate dehydrogenase phosphoenolpyruvate carboxylkinase enolase I enolase phosphoglycerate mutase 3-phosphoglycerate kinase glyceraldehyde-3- phosphate dehydrogenase glyceraldehyde-3- phosphate dehydrogenase glyceraldehyde-3- phosphate dehydrogenase glyceraldehyde-3- phosphate dehydrogenase glyceraldehyde-3- phosphate dehydrogenase glyceraldehyde-3- phosphate dehydrogenase glyceraldehyde-3- phosphate dehydrogenase glyceraldehyde-3- phosphate dehydrogenase glyceraldehyde-3- phosphate dehydrogenase glyceraldehyde-3- phosphate dehydrogenase	MAE1 PYC2 PYC1 MDH2 PCK1 ENO1 ENO2 GPM1 PGK1 TDH3 TDH2 TDH1 FBA1 FBP1 PGI1
arginine degradation (anaerobic)	L-arginine CAR1 3,56 L-ornithine CAR2 2.46 L-glutamate g-semialdehyde L-D ¹ -pyrroline-5-carboxylate PR03 -0,325 L-proline	arginase ornithine aminotransferase delta 1-pyrroline-5- carboxylate reductase	CAR1 CAR2 PRO3

<u>allantoin</u> degradation	allantoin DAL1 -2.15 allantoate DAL2 -0.431 (S)-Ureidoglycolate DAL3 -1.03 urea DUR1,2 Urea-1-carboxylate DUR1,2 CO ₂	allantoinaseDAL1allantoicaseDAL2ureidoglycolateDAL3hydrolaseurea carboxylase /urea carboxylase /DUR1,2allophanate hydrolase
leucine biosynthesis	2-keto-isovalerate LEU9 -2.54 LEU4 -0.419 2-isopropylmalate LEU1 -0.926 3-isopropylmalate LEU2 -0.886 a-ketoisocaproate BAT2 0.563 BAT1 -1.28 L-leucine	alpha-isopropylmalate synthaseLEU4alpha-isopropylmalate synthase, minor isozymeLEU9isopropylmalate isomerase beta-IPM dehydrogenaseLEU1beta-IPM dehydrogenaseLEU2branched-chain amino acid aminotransferaseBAT1 aminotransmino acid bAT2 transaminase
<u>valine</u> <u>degradation</u>	L-valine BAT2 0.563 BAT1 -1.28 2-keto-isovalerate PDC6 4.34 PDC5 -0.264 PDC1 -0.25 isobutanal SFA1 0.394 ADH5 0.417 ADH4 -0.763 isobutyl alcohol	branched-chain amino acidBAT1aminotransferasebranched-chain amino acidBAT2branched-chain amino acidBAT2transaminasePDC1decarboxylasePDC1decarboxylasePDC5decarboxylasePDC6decarboxylaseADH1alcohol dehydrogenaseADH2alcohol dehydrogenaseADH3alcohol dehydrogenaseADH4alcohol dehydrogenaseADH5formaldehydeSFA1dehydrogenaseAlchol
citrulline biosynthesis	L-glutamine CPA1 -0.846 CPA2 -1.31 carbamoyl-phosphate ARG3 -3.02 citrulline	carbamoyl phosphateCPA1 CPA2synthetaseornithineARG3carbamoyltransferase
serine biosynthesis from 3- phosphoglycer	3-phosphoglycerate SER33 0.522 SER3 -2.11 3-phospho-hydroxypyruvate SER1 -0.612	3-phosphoglycerate dehydrogenaseSER3 SER3 dehydrogenase3-phosphoglycerate dehydrogenaseSER33 SER1
ate	3-phospho-serine SER2 -1.25 L-serine	transaminase phosphoserine <u>SER2</u> phosphatase


glutathione- glutaredoxin redox reactions glyoxylate cycle	GLR1 0.0152 HYR1 0.741 GPX2 -1.7 glutathione disulfide MLS1 0.296 DAL7 -1.84 succinate glyoxylate oxaloacetic acid ICL1 0.842 ICL1 0.664 ACO2 -3.04 cis-aconitate	glutathione oxidoreductaseGLR1glutathione transferaseGTT1glutathione transferaseGTT2Glutathione peroxidaseGPX2glutathione-peroxidaseHYR1Glutathione peroxidaseGPX1cytosolic malateMDH2dehydrogenasemDH3dehydrogenaseCIT2aconitate hydrataseACO2aconitaseICL1malate synthaseICL1malate synthaseMLS1	
isoleucine degradation	L-iso-leucine BAT2 0,563 BAT1 -1,28 2-keto-3-methyl-valerate PDC6 4,34 PDC5 -0,264 PDC1 -0,25 ARO10 0,0698 THI3 0,232 2-methylbutanal SFA1 0,394 ADH5 0,417 ADH4 -0,763 amyl alcohol	Initial of numberInitial of numberbranched-chain amino acid aminotransferaseBAT1branched-chain amino acid transaminaseBAT2branched-chain amino acid transaminaseBAT2ketoisocaproate decarboxylase / decarboxylaseTHI3decarboxylase / decarboxylasePDC1decarboxylasePDC1decarboxylasePDC5decarboxylasePDC6decarboxylaseADH1alcohol dehydrogenaseADH2alcohol dehydrogenaseADH3alcohol dehydrogenaseADH4alcohol dehydrogenaseADH5formaldehyde dehydrogenaseSFA1dehydrogenaseSFA1	

<u>de novo</u> biosynthesis of	L-glutamine URA2 -0.528	carbamyl phosphate synthase / aspartate transcarbamylase	URA2
pyrimidine	carbamoyl-phosphate	dihydrooratase	URA4
ribonucleotide	URA2 -0,528	dihydroorotate	URA1
<u>s</u>	carbamoyl-L-aspartate	dehydrogenase	<u>01011</u>
	URA4 -0.352	orotate	<u>URA10</u>
	dihydroorotate	phosphoribosyltransferase	
	URA1 -0,596	orotate phosphoribosyltransferase	URA5
	orotate	orotidine-5'-phosphate	URA3
	URA5 -0,813 URA10 2,76	decarboxylase	
	orotidine-5'-phosphate	uridylate kinase	<u>URA6</u>
	URA3 -0.639	CTP synthase	URA7
	UMP	CTP synthase	URA8
	URA6 -0.337		
	UDP		
	UTP		
	URA8 1.09 URA7 -1.85		
	CTP		
acetoin biosynthesis II	PIC6 4.34 PDC5 -0.264	pyruvate decarboxylase / decarboxylase	PDC1
	PDC1 -0.25 PDC6 4.34 PDC5 -0.264 PDC1 -0.25 PDC1 -0.25	pyruvate decarboxylase / decarboxylase	<u>PDC5</u>
	acetoin	pyruvate decarboxylase / decarboxylase	PDC6
sucrose	sucrose	invertase SUC2	
degradation	SUC2 2,63		
	D-fructose D-D-glucose		
glycine	glyoxylate	alanine:glyoxylate	AGX1
biosynthesis	AGX1 3,1	aminotransferase	
from	L-glycine		
glyoxylate			
phenylalanine	L-phenylalanine	aromatic amino acid	ARO8
degradation	AR08 -1.29 AR09 -0.0817	aminotransferase I	<u></u>
	phengipgruvate AR010 0.0698 PDC6 4.34	aromatic amino acid aminotransferase II	ARO9
	PDC5 -0.264 PDC1 -0.25	pyruvate decarboxylase / decarboxylase	PDC1
	phenylacetaldehyde SFA1 0.394 ADH5 0.417	pyruvate decarboxylase / decarboxylase	PDC5
	ADH4 -0.763	pyruvate decarboxylase / decarboxylase	PDC6
	phenylethanol	decarboxylase	<u>ARO10</u>
		alcohol dehydrogenase	ADH1
		alcohol dehydrogenase	ADH2
		alcohol dehydrogenase	ADH3
		alcohol dehydrogenase	ADH4
		alcohol dehydrogenase	ADH5
		formaldehyde dehydrogenase / alcohol dehydrogenase	<u>SFA1</u>

beta-alanine biosynthesis	spermine FMS1 0.784 3-aminopropanal ALD3 2.75 ALD2 0.717 b-alanine	amine oxidase aldehyde dehydrogenase (stress inducible cytoplasmic) aldehyde dehydrogenase (stress inducible cytoplasmic)	FMS1 ALD2 ALD3
fatty acid oxidation pathway	a Cyln-2-CoA FAA1 -0.115 FAA4 0.472 FAA3 -1.31 FAA2 0.376 FAT1	fatty acid transporteracyl-CoA synthetaseacyl-CoA synthaselong chain fatty acyl:CoAsynthetaselong chain fatty acyl:CoAsynthetased3,d2-Enoyl-CoAIsomerasedelta(3,5)-delta(2,4)-dienoyl-CoA isomerasefatty-acyl coenzyme Aoxidase3-hydroxyacyl-CoAdehydrogenase3-oxoacyl CoA thiolase	FAT1 FAA2 FAA3 FAA4 FAA1 ECI1 DCI1 POX1 FOX2 POT1
superpathway of glutamate biosynthesis	isocitrate IDP3 0,987 IDP2 3,06 NH3 IDP1 -0,617 GLN1 0,231 2-oxoglutarate GLT1 -1,2 GDH1 -0,797 GDH3 1,83 L-glutamate	NADP-dependentisocitrate dehydrogenaseNADP-dependentisocitrate dehydrogenaseNADP-dependentisocitrate dehydrogenaseglutamine synthetaseNADP-dependentglutamate dehydrogenaseNADP-dependentglutamate dehydrogenaseNADP-dependentglutamate dehydrogenaseNADP-dependentglutamate synthese(NADH)	IDP1 IDP2 IDP3 GLN1 GDH3 GDH1 GLT1
oxidative branch of the pentose phosphate pathway	glucose-6-phosphate ZWF1 1.13 D-6-phospho-glucono-d-lactone SOL4 1.28 SOL3 -1.26 6-phospho-D-gluconate GND1 -0.67 GND2 2.09 ribulose-5-phosphate	glucose-6-phosphate dehydrogenase 6-phosphogluconolactonase 6-phosphogluconolactonase 6-phosphogluconate dehydrogenase 6-phosphogluconate dehydrogenase, decarboxylating	

tryptophan degradation	L-tryptophan AR08 -1.29 AR09 -0.0817 indolepgrovate AR010 0.0698 PDC6 4.34 PDC5 -0.264 PDC1 -0.25 indole acetaldehyde SFA1 0.394 ADH5 0.417 ADH4 -0.763 indole-3-ethanol	aromatic amino acid aminotransferase IARO8aromatic amino acid aminotransferase IIARO9aminotransferase IIPDC1pyruvate decarboxylase / decarboxylasePDC5pyruvate decarboxylase / decarboxylasePDC5gecarboxylasePDC6decarboxylaseARO10alcohol dehydrogenaseADH1alcohol dehydrogenaseADH2alcohol dehydrogenaseADH3alcohol dehydrogenaseADH4alcohol dehydrogenaseADH5formaldehydeSFA1dehydrogenaseCDD1
pathways of pyrimidine	URH1 -1.28 CDD1 0.214 URK1 0.0648 cytosine uridine CMP	deoxycytidine kinase / URK1 cytidine kinase / uridine
ribonucleotide <u>s</u>	FCY1 -0.0083 URH1 -1.28 CDP uracil URK1 0.0648 YNK1 1.06	kinase nicotinic acid riboside <u>URH1</u> hydrolase [multifunctional]
	FUR1 -2.13 CTP	cytosine deaminase <u>FCY1</u>
		<u>UPRTase</u> <u>FUR1</u>
		nucleoside diphosphate <u>YNK1</u> kinase
removal of superoxide	2 0 ₂ ⁻ 2 H ⁺ S0D2 0,877 S0D1 0,393	cytoplasmic superoxide <u>SOD1</u> <u>dismutase</u>
radicals	H ₂ O ₂ CTT1 2.17 CTA1 -0.838 H ₂ O O ₂	mitochondrial superoxide SOD2 dismutase
	120 02	catalase A CTA1
de novo biosynthesis of pyrimidine deoxyribonucl eotides	CDP RNR1 -2.08 RNR2 0.451 RNR3 1.2 RNR4 0.291 VINK1 1.06 dCTP VINK1 1.06 dCTP VINK1 1.16 dUNP CDC8 -0.5 dTP VINK1 1.06 dTP VINK1 1.06 dTP	catalase TCTT1ribonucleotid e reductaseRNR1 RNR2 RNR3 R NR4dUTPDUT1 pyrophosphat asethymidylate synthaseCDC21 Synthaseuridylate kinase / thymidylate kinaseCDC8 kinasenucleoside kinaseYNK1 diphosphate kinase

Gene	Description	FC a	P value
Cell wall c	ellular compartment		
Cytokinesis			L
XBP1	Transcriptional repressor that binds to promoter sequences of the cyclin genes, CYS3, and SMF2; expression is induced by stress or starvation during mitosis, and late in meiosis; member of the Swi4p/Mbp1p family; potential Cdc28p substrate, XBP1	2.1	2.58E- 05
AFR1	Alpha-factor pheromone receptor regulator, negatively regulates pheromone receptor signaling; required for normal mating projection (shmoo) formation; required for Spa2p to recruit Mpk1p to shmoo tip during mating; interacts with Cdc12p, AFR1	1.9	1.81E- 04
MET30	F-box protein containing five copies of the WD40 motif, controls cell cycle function, sulfur metabolism, and methionine biosynthesis as part of the ubiquitin ligase complex; interacts with and regulates Met4p, localizes within the nucleus, MET30	1.6	2.18E- 03
DSE4	Daughter cell-specific secreted protein with similarity to glucanases, degrades cell wall from the daughter side causing daughter to separate from mother, DSE4	-1.9	2.50E- 04
GAS2	1,3-beta-glucanosyltransferase, involved with Gas4p in spore wall assembly; has similarity to Gas1p, GAS2	-2.0	8.47E- 04
EGT2	Glycosylphosphatidylinositol (GPI)-anchored cell wall endoglucanase required for proper cell separation after cytokinesis, expression is activated by Swi5p and tightly regulated in a cell cycle-dependent manner, EGT2	-2.1	7.20E- 03
SUN4	Cell wall protein related to glucanases, possibly involved in cell wall septation; member of the SUN family, SUN4	-2.2	1.47E- 04
GAS3	Putative 1,3-beta-glucanosyltransferase, has similarity to Gas1p; localizes to the cell wall, GAS3	-2.3	6.04E- 04
CTS1	Endochitinase, required for cell separation after mitosis; transcriptional activation during late G and early M cell cycle phases is mediated by transcription factor Ace2p, CTS1	-2.4	9.10E- 04
UTR2	Cell wall protein that functions in the transfer of chitin to beta(1-6)glucan; putative chitin transglycosidase; glycosylphosphatidylinositol (GPI)-anchored protein localized to the bud neck; has a role in cell wall maintenance, UTR2	-2.6	3.22E- 04
SCW11	Cell wall protein with similarity to glucanases; may play a role in conjugation during mating based on its regulation by Ste12p, SCW11	-3.0	3.29E- 04
DSE1	Daughter cell-specific protein, may participate in	-3.1	1.03E-

SI Table 2. Differentially expressed genes 2 h after limonene exposure. Genes are categorized based on either cellular compartments and/or biological processes.

	pathways regulating cell wall metabolism; deletion affects cell separation after division and sensitivity to drugs targeted against the cell wall, DSE1		03
DSE2	Daughter cell-specific secreted protein with similarity to glucanases, degrades cell wall from the daughter side causing daughter to separate from mother; expression is repressed by cAMP, DSE2	-3.2	7.35E- 04
SPS4	Protein whose expression is induced during sporulation; not required for sporulation; heterologous expression in E. coli induces the SOS response that senses DNA damage, SPS4	-3.7	3.24E- 06
Cell wall org	ganization		
YGP1	Cell wall-related secretory glycoprotein; induced by nutrient deprivation-associated growth arrest and upon entry into stationary phase; may be involved in adaptation prior to stationary phase entry; has similarity to Sps100p, YGP1	4.0	1.13E- 07
PIR3	O-glycosylated covalently-bound cell wall protein required for cell wall stability; expression is cell cycle regulated, peaking in M/G1 and also subject to regulation by the cell integrity pathway, PIR3	5.0	9.39E- 07
FIT2	Mannoprotein that is incorporated into the cell wall via a glycosylphosphatidylinositol (GPI) anchor, involved in the retention of siderophore-iron in the cell wall, FIT2	2.0	6.39E- 05
TIP1	Major cell wall mannoprotein with possible lipase activity; transcription is induced by heat- and cold-shock; member of the Srp1p/Tip1p family of serine-alanine-rich proteins, TIP1	2.1	1.44E- 04
YPK2	Protein kinase with similarityto serine/threonine protein kinase Ypk1p; functionally redundant with YPK1 at the genetic level; participates in a signaling pathway required for optimal cell wall integrity; homolog of mammalian kinase SGK, YPK2	1.8	5.36E- 04
SPI1	GPI-anchored cell wall protein involved in weak acid resistance; basal expression requires Msn2p/Msn4p; expression is induced under conditions of stress and during the diauxic shift; similar to Sed1p, SPI1	4.7	8.17E- 04
SNA3	Integral membrane protein localized to vacuolar intralumenal vesicles, computational analysis of large- scale protein-protein interaction data suggests a possible role in either cell wall synthesis or protein-vacuolar targeting, SNA3	1.2	8.98E- 04
FRT2	Tail-anchored endoplasmic reticulum membrane protein, interacts with homolog Frt1p but is not a substrate of calcineurin (unlike Frt1p), promotes growth in conditions of high Na+, alkaline pH, or cell wall stress; potential Cdc28p substrate, FRT2	1.7	3.36E- 03
USV1	Putative transcription factor containing a C2H2 zinc finger; mutation affects transcriptional regulation of genes	1.2	4.26E- 03

	involved in protein folding, ATP binding, and cell wall biosynthesis, USV1		
PST1	Cell wall protein that contains a putative GPI-attachment site; secreted by regenerating protoplasts; up-regulated by activation of the cell integrity pathway, as mediated by Rlm1p; upregulated by cell wall damage via disruption of FKS1, PST1	1.9	4.73E- 03
ECM4	Omega class glutathione transferase; not essential; similar to Ygr154cp; green fluorescent protein (GFP)-fusion protein localizes to the cytoplasm, ECM4	1.4	2.94E- 04
TDH1	Glyceraldehyde-3-phosphate dehydrogenase, isozyme 1, involved in glycolysis and gluconeogenesis; tetramer that catalyzes the reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in the cytoplasm and cell wall [Source:SGD;Acc:S000003588]	1.1	5.38E- 03
FIT3	Mannoprotein that is incorporated into the cell wall via a glycosylphosphatidylinositol (GPI) anchor, involved in the retention of siderophore-iron in the cell wall, FIT3	1.7	5.54E- 03
Hsp150	O-mannosylated heat shock protein that is secreted and covalently attached to the cell wall via beta-1,3-glucan and disulfide bridges; required for cell wall stability; induced by heat shock, oxidative stress, and nitrogen limitation, HSP150	1.0	6.70E- 03
CWP1	Cell wall mannoprotein, linked to a beta-1,3- and beta- 1,6-glucan heteropolymer through a phosphodiester bond; involved in cell wall organization, CWP1	1.1	7.41E- 03
YPS6	Putative GPI-anchored aspartic protease, YPS6	1.2	8.35E- 03
GSC2	Catalytic subunit of 1,3-beta-glucan synthase, involved in formation of the inner layer of the spore wall; activity positively regulated by Rho1p and negatively by Smk1p; has similarity to an alternate catalytic subunit, Fks1p (Gsc1p), GSC2	1.6	1.04E- 03
RIM21	Component of the RIM101 pathway, has a role in cell wall construction and alkaline pH response; has similarity to A. nidulans PalH, RIM21	1.1	5.03E- 03
SLT2	Serine/threonine MAP kinase involved in regulating the maintenance of cell wall integrity and progression through the cell cycle; regulated by the PKC1-mediated signaling pathway,	0.9	0.05730 8
MLP1	Protein kinase implicated in the Slt2p mitogen-activated (MAP) kinase signaling pathway; associates with Rlm1p,	2.1	1.38E- 03
ECM4	Omega class glutathione transferase; not essential; similar to Ygr154cp; green fluorescent protein (GFP)-fusion protein localizes to the cytoplasm, ECM4	1.4	2.94E- 04
FBP26	Fructose-2,6-bisphosphatase, required for glucose metabolism	1.4	7.85E- 04
I ransmenn	brane transport		

	I are affinity aming gold normages, may got to gunnly the	51	2.020
AGP3	Low-affinity amino acid permease, may act to supply the cell with amino acids as nitrogen source in nitrogen-poor conditions; transcription is induced under conditions of	5.1	3.92E- 06
	sulfur limitation, AGP3		
MUP1	High affinity methionine permease, integral membrane	4.6	1.75E-
	protein with 13 putative membrane-spanning regions; also		04
	involved in cysteine uptake, MUP1		
YCT1	High-affinity cysteine-specific transporter with similarity	4.3	3.25E-
	to the Dal5p family of transporters; green fluorescent		04
	protein (GFP)-fusion protein localizes to the endoplasmic		
	reticulum; YCT1 is not an essential gene, YCT1		
HXT5	Hexose transporter with moderate affinity for glucose,	3.9	8.32E-
	induced in the presence of non-fermentable carbon		06
	sources, induced by a decrease in growth rate, contains an		
	extended N-terminal domain relative to other HXTs,		
STL1	Glycerol proton symporter of the plasma membrane,	3.9	2.35E-
	subject to glucose-induced inactivation, strongly but		03
	transiently induced when cells are subjected to osmotic		
	shock, STL1		
PDR15	Plasma membrane ATP binding cassette (ABC)	3.2	4.08E-
	transporter, multidrug transporter and general stress		04
	response factor implicated in cellular detoxification;		
	regulated by Pdr1p, Pdr3p and Pdr8p; promoter contains a		
	PDR responsive element, PDR15		
MMP1	High-affinity S-methylmethionine permease, required for	2.3	1.05E-
	utilization of S-methylmethionine as a sulfur source; has		03
	similarity to S-adenosylmethionine permease Sam3p,		
	MMP1		1.511
SAM3	High-affinity S-adenosylmethionine permease, required	2.2	1.71E-
	for utilization of S-adenosylmethionine as a sulfur source;		03
	has similarity to S-methylmethionine permease Mmp1p,		
	SAM3		2 205
JEN1	Lactate transporter, required for uptake of lactate and	2.2	2.20E-
	pyruvate; phosphorylated; expression is derepressed by		03
	transcriptional activator Cat8p during respiratory growth,		
	and repressed in the presence of glucose, fructose, and mannose, JEN1		
JEN1		2.2	2.20E-
JEINI	Lactate transporter, required for uptake of lactate and	2.2	
	pyruvate; phosphorylated; expression is derepressed by transcriptional activator Cat8p during respiratory growth,		03
	and repressed in the presence of glucose, fructose, and		
	mannose, JEN1		
CSR2	Nuclear protein with a potential regulatory role in	2.1	3.02E-
00112	utilization of galactose and nonfermentable carbon	2.1	05
	sources; overproduction suppresses the lethality at high		05
	temperature of a chs5 spa2 double null mutation; potential		
	Cdc28p substrate, CSR2		
PDR5	Plasma membrane ATP-binding cassette (ABC)	2.0	3.66E-
1 010	transporter, short-lived multidrug transporter actively	2.0	03
	regulated by Pdr1p; also involved in steroid transport,		00
	regulated by Pdr1p; also involved in steroid transport,		

	cation resistance, and cellular detoxification during exponential growth, PDR5		
MUP3	Low affinity methionine permease, similar to Mup1p, MUP3	1.9	8.15E- 04
YOR1	Plasma membrane ATP-binding cassette (ABC) transporter, multidrug transporter mediates export of many different organic anions including oligomycin, YOR1	1.7	8.81E- 03
ALP1	Arginine transporter; expression is normally very low and it is unclear what conditions would induce significant expression, ALP1	1.2	3.81E- 03
ZRT1	High-affinity zinc transporter of the plasma membrane, responsible for the majority of zinc uptake; transcription is induced under low-zinc conditions by the Zap1p transcription factor, ZRT1	-1.1	7.69E- 03
PDR12	Plasma membrane ATP-binding cassette (ABC) transporter, weak-acid-inducible multidrug transporter required for weak organic acid resistance; induced by sorbate and benzoate and regulated by War1p; mutants exhibit sorbate hypersensitivity, PDR12	-1.5	8.27E- 04
Redox pro	cesses		
JLP1	Fe(II)-dependent sulfonate/alpha-ketoglutarate dioxygenase, involved in sulfonate catabolism for use as a sulfur source, contains sequence that closely resembles a J domain (typified by the E. coli DnaJ protein), JLP1	6.7	1.80E- 05
OYE3	Widely conserved NADPH oxidoreductase containing flavin mononucleotide (FMN), homologous to Oye2p with slight differences in ligand binding and catalytic properties; may be involved in sterol metabolism, OYE3	3.6	9.43E- 05
IDP2	Cytosolic NADP-specific isocitrate dehydrogenase, catalyzes oxidation of isocitrate to alpha-ketoglutarate; levels are elevated during growth on non-fermentable carbon sources and reduced during growth on glucose, IDP2	3.1	1.51E- 04
GPX1	Phospholipid hydroperoxide glutathione peroxidase induced by glucose starvation that protects cells from phospholipid hydroperoxides and nonphospholipid peroxides during oxidative stress, GPX1	3.0	8.70E- 03
IRC15	Putative S-adenosylmethionine-dependent methyltransferase of the seven beta-strand family; null mutant displays increased levels of spontaneous Rad52 foci,	2.9	5.70E- 05
NDE2	Mitochondrial external NADH dehydrogenase, catalyzes the oxidation of cytosolic NADH; Nde1p and Nde2p are involved in providing the cytosolic NADH to the mitochondrial respiratory chain, NDE2	2.7	9.11E- 06
HMX1	ER localized, heme-binding peroxidase involved in the degradation of heme; does not exhibit heme oxygenase activity despite similarity to heme oxygenases; expression	2.5	9.76E- 03

	regulated by AFT1, HMX1		
FMO1	Flavin-containing monooxygenase, localized to the	2.4	1.45E-
	cytoplasmic face of the ER membrane; catalyzes		04
	oxidation of biological thiols to maintain the ER redox		
	buffer ratio for correct folding of disulfide-bonded		
	proteins, FMO1		
GRE2	NADPH-dependent methylglyoxal reductase (D-	2.2	3.38E-
	lactaldehyde dehydrogenase); stress induced (osmotic,		03
	ionic, oxidative, heat shock and heavy metals); regulated		
	by the HOG pathway, GRE2		
GTO1	Omega-class glutathione transferase; induced under	2.2	9.17E-
	oxidative stress; putative peroxisomal localization, GTO1		05
CTT1	Cytosolic catalase T, has a role in protection from	2.2	1.98E-
	oxidative damage by hydrogen peroxide, CTT1		04
GND2	6-phosphogluconate dehydrogenase (decarboxylating),	2.1	1.28E-
	catalyzes an NADPH regenerating reaction in the pentose		04
	phosphate pathway; required for growth on D-glucono-		
	delta-lactone, GND2		
FRE5	Putative ferric reductase with similarity to Fre2p;	2.1	9.73E-
	expression induced by low iron levels; the authentic, non-		04
	tagged protein is detected in highly purified mitochondria		
	in high-throughput studies, FRE5		
FMP46	Putative redox protein containing a thioredoxin fold; the	2.0	5.29E-
	authentic, non-tagged protein is detected in highly		03
	purified mitochondria in high-throughput studies, FMP46	1.0	4.000
YHB1	Nitric oxide oxidoreductase, flavohemoglobin involved in	1.9	4.92E-
	nitric oxide detoxification; plays a role in the oxidative		03
OLE1	and nitrosative stress responses, YHB1	1.0	2.200
OLEI	Delta(9) fatty acid desaturase, required for monoungaturated fatty acid sumthacis and for normal	1.9	3.32E- 04
	monounsaturated fatty acid synthesis and for normal		04
MET8	distribution of mitochondria, OLE1 Bifunctional dehydrogenase and ferrochelatase, involved	1.9	4.47E-
IVIL I O	in the biosynthesis of siroheme, a prosthetic group used	1.9	4.47L- 04
	by sulfite reductase; required for sulfate assimilation and		04
	methionine biosynthesis, MET8		
GDH3	NADP(+)-dependent glutamate dehydrogenase,	1.8	5.97E-
GDIIS	synthesizes glutamate from ammonia and alpha-	1.0	04
	ketoglutarate; rate of alpha-ketoglutarate utilization		01
	differs from Gdh1p; expression regulated by nitrogen and		
	carbon sources, GDH3		
MXR1	Peptide methionine sulfoxide reductase, reverses the	1.8	1.94E-
	oxidation of methionine residues; involved in oxidative	1.0	03
	damage repair, providing resistance to oxidative stress		
	and regulation of lifespan, MXR1		
BDH2			
	Putative medium-chain alcohol dehydrogenase with	1.7	3.83E-
JU114	Putative medium-chain alcohol dehydrogenase with similarity to BDH1; transcription induced by	1.7	3.83E- 03
50112		1.7	
YKL107W	similarity to BDH1; transcription induced by	1.7	

			04
TRX3	Mitochondrial thioredoxin, highly conserved	1.6	2.39E-
	oxidoreductase required to maintain the redox		03
	homeostasis of the cell, forms the mitochondrial		
	thioredoxin system with Trr2p, redox state is maintained		
	by both Trr2p and Glr1p, TRX3		
HBN1	Putative protein of unknown function; similar to bacterial	1.5	2.10E-
	nitroreductases; green fluorescent protein (GFP)-fusion		04
	protein localizes to the cytoplasm and nucleus, HBN1		
YDL124W	NADPH-dependent alpha-keto amide reductase; reduces	1.5	4.20E-
	aromatic alpha-keto amides, aliphatic alpha-keto esters,		04
	and aromatic alpha-keto esters; member of the aldo-keto		
	reductase (AKR) family,		
ECM4	Omega class glutathione transferase; not essential; similar	1.4	2.94E-
	to Ygr154cp; green fluorescent protein (GFP)-fusion		04
	protein localizes to the cytoplasm, ECM4		
GUT2	Mitochondrial glycerol-3-phosphate dehydrogenase;	1.3	4.40E-
	expression is repressed by both glucose and cAMP and		03
	derepressed by non-fermentable carbon sources in a		
	Snf1p, Rsf1p, Hap2/3/4/5 complex dependent manner,		
	GUT2		
MCR1	Mitochondrial NADH-cytochrome b5 reductase, involved	1.3	1.58E-
	in ergosterol biosynthesis, MCR1		03
RPH1	JmjC domain-containing histone demethylase which can	1.3	7.43E-
	specifically demethylate H3K36 tri- and dimethyl		03
	modification states; transcriptional repressor of PHR1;		
	Rph1p phosphorylation during DNA damage is under		
	control of the MEC1-RAD53 pathway, RPH1		
AAD6	Putative aryl-alcohol dehydrogenase with similarity to P.	1.2	7.73E-
	chrysosporium aryl-alcohol dehydrogenase, involved in		03
	the oxidative stress response, AAD6		
RNR3	Ribonucleotide-diphosphate reductase (RNR), large	1.2	8.96E-
	subunit; the RNR complex catalyzes the rate-limiting step		03
	in dNTP synthesis and is regulated by DNA replication		
	and DNA damage checkpoint pathways via localization of		
	the small subunits, RNR3		
GDH2	NAD(+)-dependent glutamate dehydrogenase, degrades	1.1	1.67E-
	glutamate to ammonia and alpha-ketoglutarate; expression		03
	sensitive to nitrogen catabolite repression and intracellular		
	ammonia levels, GDH2		
OYE2	Widely conserved NADPH oxidoreductase containing	1.1	4.40E-
	flavin mononucleotide (FMN), homologous to Oye3p		03
	with slight differences in ligand binding and catalytic		
	properties; may be involved in sterol metabolism, OYE2		
FRE6	Putative ferric reductase with similarity to Fre2p;	1.1	7.08E-
	expression induced by low iron levels, FRE6		03
UGA2	Succinate semialdehyde dehydrogenase involved in the	1.1	5.39E-
	utilization of gamma-aminobutyrate (GABA) as a		03
	nitrogen source; part of the 4-aminobutyrate and		_

	glutamate degradation pathways; localized to the cytoplasm, UGA2		
FAS2	Alpha subunit of fatty acid synthetase, which catalyzes the synthesis of long-chain saturated fatty acids; contains beta-ketoacyl reductase and beta-ketoacyl synthase activities; phosphorylated, FAS2	1.1	6.48E- 03
PRX1	Mitochondrial peroxiredoxin (1-Cys Prx) with thioredoxin peroxidase activity, has a role in reduction of hydroperoxides; induced during respiratory growth and under conditions of oxidative stress; phosphorylated, PRX1	1.1	2.76E- 03
GTT1	ER associated glutathione S-transferase capable of homodimerization; expression induced during the diauxic shift and throughout stationary phase; functional overlap with Gtt2p, Grx1p, and Grx2p, GTT1	1.0	9.16E- 03
HTD2	Mitochondrial 3-hydroxyacyl-thioester dehydratase involved in fatty acid biosynthesis, required for respiratory growth and for normal mitochondrial morphology, HTD2	1.0	3.55E- 03
LOT6	FMN-dependent NAD(P)H:quinone reductase that may be involved in quinone detoxification; gene expression increases in cultures shifted to a lower temperature, LOT6	0.9	5.86E- 03
Biosynthesis	of secondary metabolites		
FBP1	Fructose-1,6-bisphosphatase, key regulatory enzyme in the gluconeogenesis pathway, required for glucose metabolism, FBP1	5.5	7.81E- 05
PDC6	Minor isoform of pyruvate decarboxylase, decarboxylates pyruvate to acetaldehyde, involved in amino acid catabolism; transcription is glucose- and ethanol- dependent, and is strongly induced during sulfur limitation, PDC6	4.3	3.70E- 04
INO1	Inositol 1-phosphate synthase, involved in synthesis of inositol phosphates and inositol-containing phospholipids; transcription is coregulated with other phospholipid biosynthetic genes by Ino2p and Ino4p, which bind the UASINO DNA element, INO1	4.1	7.39E- 07
AGX1	Alanine:glyoxylate aminotransferase (AGT), catalyzes the synthesis of glycine from glyoxylate, which is one of three pathways for glycine biosynthesis in yeast; has similarity to mammalian and plant alanine:glyoxylate aminotransferases, AGX1	3.1	8.96E- 06
IDP2	Cytosolic NADP-specific isocitrate dehydrogenase, catalyzes oxidation of isocitrate to alpha-ketoglutarate; levels are elevated during growth on non-fermentable carbon sources and reduced during growth on glucose, IDP2	3.1	1.51E- 04
IRC15	Putative S-adenosylmethionine-dependent methyltransferase of the seven beta-strand family; null mutant displays increased levels of spontaneous Rad52	2.9	5.70E- 05

	foci,		
POT1	3-ketoacyl-CoA thiolase with broad chain length	2.8	5.84E-
	specificity, cleaves 3-ketoacyl-CoA into acyl-CoA and		04
	acetyl-CoA during beta-oxidation of fatty acids, POT1		
CTT1	Cytosolic catalase T, has a role in protection from	2.2	1.98E-
	oxidative damage by hydrogen peroxide, CTT1		04
GND2	6-phosphogluconate dehydrogenase (decarboxylating),	2.1	1.28E-
	catalyzes an NADPH regenerating reaction in the pentose		04
	phosphate pathway; required for growth on D-glucono-		
	delta-lactone, GND2		
MET8	Bifunctional dehydrogenase and ferrochelatase, involved	1.9	4.47E-
	in the biosynthesis of siroheme, a prosthetic group used		04
	by sulfite reductase; required for sulfate assimilation and		
	methionine biosynthesis, MET8		
GAL3	Transcriptional regulator involved in activation of the	1.3	2.31E-
	GAL genes in response to galactose; forms a complex		03
	with Gal80p to relieve Gal80p inhibition of Gal4p; binds		
	galactose and ATP but does not have galactokinase		
MCD 1	activity, GAL3	1.2	1.500
MCR1	Mitochondrial NADH-cytochrome b5 reductase, involved	1.3	1.58E-
ACS1	in ergosterol biosynthesis, MCR1	1.2	03 2.15E-
ACSI	Acetyl-coA synthetase isoform which, along with Acs2p,	1.2	2.15E- 03
	is the nuclear source of acetyl-coA for histone acetlyation; expressed during growth on nonfermentable carbon		03
	sources and under aerobic conditions, ACS1		
SDH4	Membrane anchor subunit of succinate dehydrogenase	1.1	4.66E-
5D114	(Sdh1p, Sdh2p, Sdh3p, Sdh4p), which couples the	1.1	4.00L 03
	oxidation of succinate to the transfer of electrons to		05
	ubiquinone, SDH4		
YNK1	Nucleoside diphosphate kinase, catalyzes the transfer of	1.1	4.62E-
	gamma phosphates from nucleoside triphosphates, usually		03
	ATP, to nucleoside diphosphates by a mechanism that		
	involves formation of an autophosphorylated enzyme		
	intermediate, YNK1		
SAM2	S-adenosylmethionine synthetase, catalyzes transfer of the	0.9	8.18E-
	adenosyl group of ATP to the sulfur atom of methionine;		03
	one of two differentially regulated isozymes (Sam1p and		
	Sam2p), SAM2		
Small meto	bolic processes		
PDC6	Minor isoform of pyruvate decarboxylase, decarboxylates	4.3	3.70E-
	pyruvate to acetaldehyde, involved in amino acid		04
	catabolism; transcription is glucose- and ethanol-		
	dependent, and is strongly induced during sulfur		
	limitation, PDC6		
INO1	Inositol 1-phosphate synthase, involved in synthesis of	4.1	7.39E-
	inositol phosphates and inositol-containing phospholipids;		07
	transcription is coregulated with other phospholipid		
	biosynthetic genes by Ino2p and Ino4p, which bind the		
	UASINO DNA element, INO1		

MODI			1 1 2 5
YGP1	Cell wall-related secretory glycoprotein; induced by	4.0	1.13E-
	nutrient deprivation-associated growth arrest and upon		07
	entry into stationary phase; may be involved in adaptation		
	prior to stationary phase entry; has similarity to Sps100p, YGP1		
PDR15	Plasma membrane ATP binding cassette (ABC)	3.2	4.08E-
	transporter, multidrug transporter and general stress		04
	response factor implicated in cellular detoxification;		
	regulated by Pdr1p, Pdr3p and Pdr8p; promoter contains a		
	PDR responsive element, PDR15		
AGX1	Alanine:glyoxylate aminotransferase (AGT), catalyzes the	3.1	8.96E-
	synthesis of glycine from glyoxylate, which is one of		06
	three pathways for glycine biosynthesis in yeast; has		
	similarity to mammalian and plant alanine:glyoxylate		
	aminotransferases, AGX1		
IDP2	Cytosolic NADP-specific isocitrate dehydrogenase,	3.1	1.51E-
	catalyzes oxidation of isocitrate to alpha-ketoglutarate;		04
	levels are elevated during growth on non-fermentable		
	carbon sources and reduced during growth on glucose,		
	IDP2		
POT1	3-ketoacyl-CoA thiolase with broad chain length	2.8	5.84E-
	specificity, cleaves 3-ketoacyl-CoA into acyl-CoA and		04
	acetyl-CoA during beta-oxidation of fatty acids, POT1		
URA10	One of two orotate phosphoribosyltransferase isozymes	2.8	2.39E-
	(see also URA5) that catalyze the fifth enzymatic step in		03
	the de novo biosynthesis of pyrimidines, converting		
	orotate into orotidine-5'-phosphate, URA10		
NDE2	Mitochondrial external NADH dehydrogenase, catalyzes	2.7	9.11E-
	the oxidation of cytosolic NADH; Nde1p and Nde2p are		06
	involved in providing the cytosolic NADH to the		
	mitochondrial respiratory chain, NDE2		
GRE2	NADPH-dependent methylglyoxal reductase (D-	2.2	3.38E-
	lactaldehyde dehydrogenase); stress induced (osmotic,		03
	ionic, oxidative, heat shock and heavy metals); regulated		
0704	by the HOG pathway, GRE2		0.4.55
GTO1	Omega-class glutathione transferase; induced under	2.2	9.17E-
	oxidative stress; putative peroxisomal localization, GTO1	0.1	05
GND2	6-phosphogluconate dehydrogenase (decarboxylating),	2.1	1.28E-
	catalyzes an NADPH regenerating reaction in the pentose		04
	phosphate pathway; required for growth on D-glucono-		
	delta-lactone, GND2	2.0	0.100
MHT1	S-methylmethionine-homocysteine methyltransferase,	2.0	8.18E-
	functions along with Sam4p in the conversion of S-		04
	adenosylmethionine (AdoMet) to methionine to control		
	the methionine/AdoMet ratio, MHT1		2.665
PDR5	Plasma membrane ATP-binding cassette (ABC)	2.0	3.66E-
	transporter, short-lived multidrug transporter actively		03
	regulated by Pdr1p; also involved in steroid transport,		
	cation resistance, and cellular detoxification during		
	exponential growth, PDR5		

OLE1	Delta(9) fatty acid desaturase, required for	1.9	3.32E-
OLEI	monounsaturated fatty acid synthesis and for normal	1.9	04
	distribution of mitochondria, OLE1		01
MET8	Bifunctional dehydrogenase and ferrochelatase, involved	1.9	4.47E-
	in the biosynthesis of siroheme, a prosthetic group used		04
	by sulfite reductase; required for sulfate assimilation and		
	methionine biosynthesis, MET8		
GDH3	NADP(+)-dependent glutamate dehydrogenase,	1.8	5.97E-
	synthesizes glutamate from ammonia and alpha-		04
	ketoglutarate; rate of alpha-ketoglutarate utilization		
	differs from Gdh1p; expression regulated by nitrogen and		
	carbon sources, GDH3		
CAT2	Carnitine acetyl-CoA transferase present in both	1.7	1.13E-
	mitochondria and peroxisomes, transfers activated acetyl		04
	groups to carnitine to form acetylcarnitine which can be		
	shuttled across membranes, CAT2		
YOR1	Plasma membrane ATP-binding cassette (ABC)	1.7	8.81E-
	transporter, multidrug transporter mediates export of		03
	many different organic anions including oligomycin,		
	YOR1		
MET32	Zinc-finger DNA-binding protein, involved in	1.6	4.12E-
	transcriptional regulation of the methionine biosynthetic		04
	genes, similar to Met31p, MET32		
TRX3	Mitochondrial thioredoxin, highly conserved	1.6	2.39E-
	oxidoreductase required to maintain the redox		03
	homeostasis of the cell, forms the mitochondrial		
	thioredoxin system with Trr2p, redox state is maintained		
	by both Trr2p and Glr1p, TRX3		
THI4	Thiazole synthase, catalyzes formation of the thiazole	1.6	1.27E-
	moiety of thiamin pyrophosphate; required for thiamine		04
	biosynthesis and for mitochondrial genome stability,		
	THI4		
MET28	Transcriptional activator in the Cbf1p-Met4p-Met28p	1.6	1.74E-
	complex, participates in the regulation of sulfur		04
	metabolism, MET28	1.6	4 (7)
UBC8	Ubiquitin-conjugating enzyme that negatively regulates	1.6	4.67E-
	gluconeogenesis by mediating the glucose-induced		03
	ubiquitination of fructose-1,6-bisphosphatase (FBPase);		
	cytoplasmic enzyme that catalyzes the ubiquitination of		
	histones in vitro, UBC8 F-box protein containing five copies of the WD40 motif,	1.6	2 10E
MET20			
MET30	1 0 1	1.6	2.18E-
MET30	controls cell cycle function, sulfur metabolism, and	1.0	2.18E- 03
MET30	controls cell cycle function, sulfur metabolism, and methionine biosynthesis as part of the ubiquitin ligase	1.0	
MET30	controls cell cycle function, sulfur metabolism, and methionine biosynthesis as part of the ubiquitin ligase complex; interacts with and regulates Met4p, localizes	1.0	
	controls cell cycle function, sulfur metabolism, and methionine biosynthesis as part of the ubiquitin ligase complex; interacts with and regulates Met4p, localizes within the nucleus, MET30		03
	 controls cell cycle function, sulfur metabolism, and methionine biosynthesis as part of the ubiquitin ligase complex; interacts with and regulates Met4p, localizes within the nucleus, MET30 Putative protein of unknown function; green fluorescent 	1.6	03 2.19E-
MET30 YKL151C	controls cell cycle function, sulfur metabolism, and methionine biosynthesis as part of the ubiquitin ligase complex; interacts with and regulates Met4p, localizes within the nucleus, MET30		03
	 controls cell cycle function, sulfur metabolism, and methionine biosynthesis as part of the ubiquitin ligase complex; interacts with and regulates Met4p, localizes within the nucleus, MET30 Putative protein of unknown function; green fluorescent 		03 2.19E-

	protein, related to mammalian membrane progesterone		
	receptors; mutations lead to defects in telomeres, mitochondria, and sterol synthesis, DAP1		
MET2	L-homoserine-O-acetyltransferase, catalyzes the	1.5	1.79E-
	conversion of homoserine to O-acetyl homoserine which		04
	is the first step of the methionine biosynthetic pathway,		
	MET2		
YDL124W	NADPH-dependent alpha-keto amide reductase; reduces	1.5	4.20E-
	aromatic alpha-keto amides, aliphatic alpha-keto esters,		04
	and aromatic alpha-keto esters; member of the aldo-keto		
	reductase (AKR) family,		
ECM4	Omega class glutathione transferase; not essential; similar	1.4	2.94E-
	to Ygr154cp; green fluorescent protein (GFP)-fusion		04
	protein localizes to the cytoplasm, ECM4		
GSP2	GTP binding protein (mammalian Ranp homolog)	1.4	6.29E-
	involved in the maintenance of nuclear organization,		04
	RNA processing and transport; interacts with Kap121p,		
	Kap123p and Pdr6p (karyophilin betas); Gsp1p homolog		
	that is not required for viability, GSP2		
STF1	Protein involved in regulation of the mitochondrial F1F0-	1.3	1.16E-
	ATP synthase; Stf1p and Stf2p act as stabilizing factors		03
	that enhance inhibitory action of the Inh1p protein, STF1		
GUT2	Mitochondrial glycerol-3-phosphate dehydrogenase;	1.3	4.40E-
	expression is repressed by both glucose and cAMP and		03
	derepressed by non-fermentable carbon sources in a		
	Snf1p, Rsf1p, Hap2/3/4/5 complex dependent manner,		
	GUT2		
GSH1	Gamma glutamylcysteine synthetase catalyzes the first	1.3	5.85E-
	step in glutathione (GSH) biosynthesis; expression		04
	induced by oxidants, cadmium, and mercury, GSH1		
CKI1	Choline kinase, catalyzing the first step in	1.3	3.23E-
	phosphatidylcholine synthesis via the CDP-choline		03
	(Kennedy pathway); exhibits some ethanolamine kinase		
	activity contributing to phosphatidylethanolamine		
	synthesis via the CDP-ethanolamine pathway, CKI1		
MCR1	Mitochondrial NADH-cytochrome b5 reductase, involved	1.3	1.58E-
	in ergosterol biosynthesis, MCR1		03
GTT2	Glutathione S-transferase capable of homodimerization;	1.2	1.15E-
	functional overlap with Gtt2p, Grx1p, and Grx2p, GTT2		03
VHS3	Functionally redundant (see also SIS2) inhibitory subunit	1.2	3.03E-
	of Ppz1p, a PP1c-related ser/thr protein phosphatase Z		03
	isoform; synthetically lethal with sis2; putative		
	phosphopantothenoylcysteine decarboxylase involved in		
<u> </u>	coenzyme A biosynthesis, VHS3		
CAT8	Zinc cluster transcriptional activator necessary for	1.2	7.90E-
	derepression of a variety of genes under non-fermentative		03
	growth conditions, active after diauxic shift, binds carbon		
	source responsive elements, CAT8		
PCA1	Cadmium transporting P-type ATPase; may also have a	1.2	7.40E-
	role in copper and iron homeostasis; S288C and most		03

	other lab strains contain a G970R mutation which		
GDE1	eliminates normal cadmium transport function, PCA1 Glycerophosphocholine (GroPCho) phosphodiesterase; hydrolyzes GroPCho to choline and glycerolphosphate, for use as a phosphate source and as a precursor for phosphocholine synthesis; may interact with ribosomes, GDE1	1.2	8.96E- 03
RNR3	Ribonucleotide-diphosphate reductase (RNR), large subunit; the RNR complex catalyzes the rate-limiting step in dNTP synthesis and is regulated by DNA replication and DNA damage checkpoint pathways via localization of the small subunits, RNR3	1.2	8.96E- 03
YNL200C	Putative protein of unknown function; the authentic, non- tagged protein is detected in highly purified mitochondria in high-throughput studies,	1.2	1.16E- 03
ACS1	Acetyl-coA synthetase isoform which, along with Acs2p, is the nuclear source of acetyl-coA for histone acetlyation; expressed during growth on nonfermentable carbon sources and under aerobic conditions, ACS1	1.2	2.15E- 03
CHO1	Phosphatidylserine synthase, functions in phospholipid biosynthesis; catalyzes the reaction CDP-diaclyglycerol + L-serine = CMP + L-1-phosphatidylserine, transcriptionally repressed by myo-inositol and choline, CHO1	1.1	1.53E- 03
CHO2	Phosphatidylethanolamine methyltransferase (PEMT), catalyzes the first step in the conversion of phosphatidylethanolamine to phosphatidylcholine during the methylation pathway of phosphatidylcholine biosynthesis, CHO2	1.1	3.97E- 03
MSB3	GTPase-activating protein for Sec4p and several other Rab GTPases, regulates exocytosis via its action on Sec4p, also required for proper actin organization; similar to Msb4p; both Msb3p and Msb4p localize to sites of polarized growth, MSB3	1.1	2.29E- 03
GDH2	NAD(+)-dependent glutamate dehydrogenase, degrades glutamate to ammonia and alpha-ketoglutarate; expression sensitive to nitrogen catabolite repression and intracellular ammonia levels, GDH2	1.1	1.67E- 03
UGA2	Succinate semialdehyde dehydrogenase involved in the utilization of gamma-aminobutyrate (GABA) as a nitrogen source; part of the 4-aminobutyrate and glutamate degradation pathways; localized to the cytoplasm, UGA2	1.1	5.39E- 03
FAS2	Alpha subunit of fatty acid synthetase, which catalyzes the synthesis of long-chain saturated fatty acids; contains beta-ketoacyl reductase and beta-ketoacyl synthase activities; phosphorylated, FAS2	1.1	6.48E- 03
YNK1	Nucleoside diphosphate kinase, catalyzes the transfer of gamma phosphates from nucleoside triphosphates, usually ATP, to nucleoside diphosphates by a mechanism that	1.1	4.62E- 03

	involves formation of an autophosphorylated enzyme intermediate, YNK1		
MET3	ATP sulfurylase, catalyzes the primary step of intracellular sulfate activation, essential for assimilatory reduction of sulfate to sulfide, involved in methionine metabolism, MET3	1.1	9.38E- 03
ROM1	GDP/GTP exchange protein (GEP) for Rho1p; mutations are synthetically lethal with mutations in rom2, which also encodes a GEP, ROM1	1.0	5.61E- 03
GTT1	ER associated glutathione S-transferase capable of homodimerization; expression induced during the diauxic shift and throughout stationary phase; functional overlap with Gtt2p, Grx1p, and Grx2p, GTT1	1.0	9.16E- 03
HTD2	Mitochondrial 3-hydroxyacyl-thioester dehydratase involved in fatty acid biosynthesis, required for respiratory growth and for normal mitochondrial morphology, HTD2	1.0	3.55E- 03
OPI3	Phospholipid methyltransferase (methylene-fatty-acyl- phospholipid synthase), catalyzes the last two steps in phosphatidylcholine biosynthesis, OPI3	1.0	6.83E- 03
EHT1	Acyl-coenzymeA:ethanol O-acyltransferase that plays a minor role in medium-chain fatty acid ethyl ester biosynthesis; contains esterase activity; localizes to lipid particles and the mitochondrial outer membrane, EHT1	0.9	6.13E- 03
INH1	Protein that inhibits ATP hydrolysis by the F1F0-ATP synthase, inhibitory function is enhanced by stabilizing proteins Stf1p and Stf2p; has similarity to Stf1p and both Inh1p and Stf1p exhibit the potential to form coiled-coil structures, INH1	0.9	8.93E- 03
SAM2	S-adenosylmethionine synthetase, catalyzes transfer of the adenosyl group of ATP to the sulfur atom of methionine; one of two differentially regulated isozymes (Sam1p and Sam2p), SAM2	0.9	8.18E- 03
Stress			
Multiple stre. SPI1	GPI-anchored cell wall protein involved in weak acid resistance; basal expression requires Msn2p/Msn4p; expression is induced under conditions of stress and during the diauxic shift; similar to Sed1p, SPI1	4.7	8.17E- 04
PDR15	Plasma membrane ATP binding cassette (ABC)transporter, multidrug transporter and general stressresponse factor implicated in cellular detoxification;regulated by Pdr1p, Pdr3p and Pdr8p; promoter contains aPDR responsive element, PDR15	3.2	4.08E- 04
DDR2	Multistress response protein, expression is activated by a variety of xenobiotic agents and environmental or physiological stresses, DDR2	2.7	1.11E- 05
GRE2	NADPH-dependent methylglyoxal reductase (D- lactaldehyde dehydrogenase); stress induced (osmotic,	2.2	3.38E- 03

	ionic, oxidative, heat shock and heavy metals); regulated by the HOG pathway, GRE2		
CTT1	Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide,	2.2	1.98E- 04
SRL3	Cytoplasmic protein that, when overexpressed, suppresses the lethality of a rad53 null mutation; potential Cdc28p substrate	2.0	0.00354
DCS2	Non-essential, stress induced regulatory protein containing a HIT (histidine triad) motif; modulates m7G- oligoribonucleotide metabolism; inhibits Dcs1p; regulated by Msn2p, Msn4p, and the Ras-cAMP-cAPK signaling pathway, similar to Dcs1p., DCS2	1.9	6.80E- 04
FRT2	Tail-anchored endoplasmic reticulum membrane protein, interacts with homolog Frt1p but is not a substrate of calcineurin (unlike Frt1p), promotes growth in conditions of high Na+, alkaline pH, or cell wall stress; potential Cdc28p substrate, FRT2	1.7	3.36E- 03
RPN4	Transcription factor that stimulates expression of proteasome genes; Rpn4p levels are in turn regulated by the 26S proteasome in a negative feedback control mechanism; RPN4 is transcriptionally regulated by various stress responses, RPN4	1.5	8.18E- 03
MBR1	Protein involved in mitochondrial functions and stress response; overexpression suppresses growth defects of hap2, hap3, and hap4 mutants, MBR1	1.5	7.49E- 03
UBI4	Ubiquitin, becomes conjugated to proteins, marking them for selective degradation via the ubiquitin-26S proteasome system; essential for the cellular stress response; encoded as a polyubiquitin precursor comprised of 5 head-to-tail repeats, UBI4	1.2	1.98E- 03
HSP150	O-mannosylated heat shock protein that is secreted and covalently attached to the cell wall via beta-1,3-glucan and disulfide bridges; required for cell wall stability; induced by heat shock, oxidative stress, and nitrogen limitation, HSP150	1.0	6.70E- 03
NTH1	Neutral trehalase, degrades trehalose; required for thermotolerance and may mediate resistance to other cellular stresses; may be phosphorylated by Cdc28p, NTH1	1.0	5.36E- 03
Osmolarity s SIP18	Protein of unknown function whose expression is induced by osmotic stress, SIP18	5.4	5.69E- 08
STL1	Glycerol proton symporter of the plasma membrane, subject to glucose-induced inactivation, strongly but transiently induced when cells are subjected to osmotic shock, STL1	3.9	2.35E- 03
PAI3	Cytop\lasmic proteinase A (Pep4p) inhibitor, dependent on Pbs2p and Hog1p protein kinases for osmotic induction; intrinsically unstructured, N-terminal half	3.7	5.86E- 06

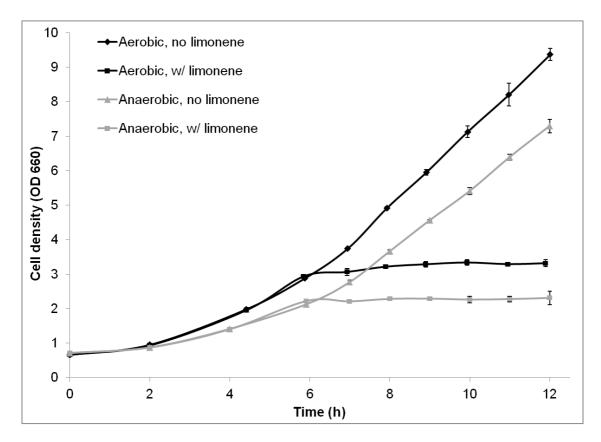
	becomes ordered in the active site of proteinase A upon contact, PAI3		
SMP1	Putative transcription factor involved in regulating the response to osmotic stress; member of the MADS-box family of transcription factors, SMP1	1.7	2.70E- 03
GPH1	Non-essential glycogen phosphorylase required for the mobilization of glycogen, activity is regulated by cyclic AMP-mediated phosphorylation, expression is regulated by stress-response elements and by the HOG MAP kinase pathway, GPH1	1.4	2.25E- 03
SSK22	MAP kinase kinase kinase of the HOG1 mitogen- activated signaling pathway; functionally redundant with, and homologous to, Ssk2p; interacts with and is activated by Ssk1p; phosphorylates Pbs2p, SSK22	1.2	5.15E- 03
Heat shock HSP26	Small heat sheek protein (sUSP) with chaperone activity:	4.4	2.95E-
H3P20	Small heat shock protein (sHSP) with chaperone activity; forms hollow, sphere-shaped oligomers that suppress unfolded proteins aggregation; oligomer activation requires a heat-induced conformational change; not expressed in unstressed cells, HSP26	4.4	2.93E- 07
GAC1	Regulatory subunit for Glc7p type-1 protein phosphatase (PP1), tethers Glc7p to Gsy2p glycogen synthase, binds Hsf1p heat shock transcription factor, required for induction of some HSF-regulated genes under heat shock, GAC1	2.2	9.99E- 05
TIP1	Major cell wall mannoprotein with possible lipase activity; transcription is induced by heat- and cold-shock; member of the Srp1p/Tip1p family of serine-alanine-rich proteins, TIP1	2.1	1.44E- 04
HSP12	Plasma membrane localized protein that protects membranes from desiccation; induced by heat shock, oxidative stress, osmostress, stationary phase entry, glucose depletion, oleate and alcohol; regulated by the HOG and Ras-Pka pathways, HSP12	1.9	5.34E- 04
UBC5	Ubiquitin-conjugating enzyme that mediates selective degradation of short-lived and abnormal proteins, central component of the cellular stress response; expression is heat inducible, UBC5	1.3	4.99E- 04
Oxidative stre	ss		
OYE3	Widely conserved NADPH oxidoreductase containing flavin mononucleotide (FMN), homologous to Oye2p with slight differences in ligand binding and catalytic properties; may be involved in sterol metabolism, OYE3	3.6	9.43E- 05
GPX1	Phospholipid hydroperoxide glutathione peroxidase induced by glucose starvation that protects cells from phospholipid hydroperoxides and nonphospholipid peroxides during oxidative stress, GPX1	3.0	8.70E- 03
GTO1	Omega-class glutathione transferase; induced under oxidative stress; putative peroxisomal localization, GTO1	2.2	9.17E- 05

CTT1	Cytosolic catalase T, has a role in protection from	2.2	1.98E-
CIII	oxidative damage by hydrogen peroxide,	2.2	04
YHB1	Nitric oxide oxidoreductase, flavohemoglobin involved in	1.9	4.92E-
THE	nitric oxide detoxification; plays a role in the oxidative	1.7	03
	and nitrosative stress responses, YHB1		05
MXR1	Peptide methionine sulfoxide reductase, reverses the	1.8	1.94E-
1012 (101	oxidation of methionine residues; involved in oxidative	1.0	03
	damage repair, providing resistance to oxidative stress		05
	and regulation of lifespan, MXR1		
gsh1	Gamma glutamylcysteine synthetase catalyzes the first	1.3	5.85E-
85111	step in glutathione (GSH) biosynthesis; expression	1.5	04
	induced by oxidants, cadmium, and mercury, GSH1		0.
GTT2	Glutathione S-transferase capable of homodimerization;	1.2	1.15E-
0112	functional overlap with Gtt2p, Grx1p, and Grx2p, GTT2	1.2	03
AAD6	Putative aryl-alcohol dehydrogenase with similarity to P.	1.2	7.73E-
	chrysosporium aryl-alcohol dehydrogenase, involved in	1.2	03
	the oxidative stress response, AAD6		05
PRX1	Mitochondrial peroxiredoxin (1-Cys Prx) with thioredoxin	1.1	2.76E-
	peroxidase activity, has a role in reduction of		03
	hydroperoxides; induced during respiratory growth and		00
	under conditions of oxidative stress; phosphorylated,		
	PRX1		
YAP5	Basic leucine zipper (bZIP) transcription factor	1.0	0.00598
GTT1	ER associated glutathione S-transferase capable of	1.0	9.16E-
0111	homodimerization; expression induced during the diauxic	1.0	03
	shift and throughout stationary phase; functional overlap		05
	with Gtt2p, Grx1p, and Grx2p, GTT1		
Cell wall integ	rity and PKC-pathway		
PIR3	O-glycosylated covalently-bound cell wall protein	5.0	9.39E-
	required for cell wall stability; expression is cell cycle		07
	regulated, peaking in M/G1 and also subject to regulation		• •
	by the cell integrity pathway		
KDX1(MLP1	Protein kinase implicated in the Slt2p mitogen-activated	2.1	1.38E-
)	(MAP) kinase signaling pathway; associates with Rlm1p,		03
,			
BAG7	Rho GTPase activating protein (RhoGAP), stimulates the	2.0	0.43253
	intrinsic GTPase activity of Rho1p, which plays a role in		
	actin cytoskeleton organization and control of cell wall		
	synthesis; structurally and functionally related to Sac7p		
HSP12	Plasma membrane localized protein that protects	1.9	5.34E-
	membranes from desiccation; induced by heat shock,		04
	oxidative stress, osmostress, stationary phase entry,		
	glucose depletion, oleate and alcohol; regulated by the		
	HOG and Ras-Pka pathways, HSP12		
DCS2	Non-essential, stress induced regulatory protein	1.9	6.80E-
	containing a HIT (histidine triad) motif; modulates m7G-		04
	oligoribonucleotide metabolism; inhibits Dcs1p; regulated		
	by Msn2p, Msn4p, and the Ras-cAMP-cAPK signaling		
	pathway, similar to Dcs1p.		

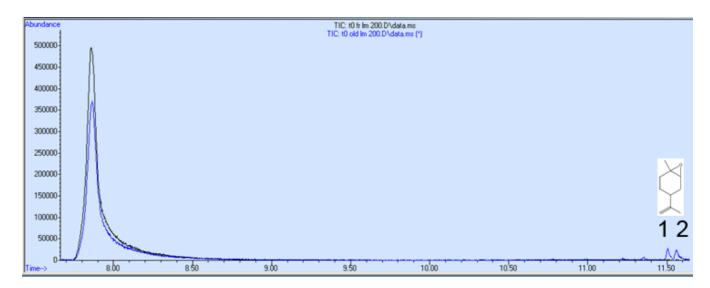
		1.0	4.045
AFR1	Alpha-factor pheromone receptor regulator, negatively	1.9	1.81E-
	regulates pheromone receptor signaling; required for		04
	normal mating projection (shmoo) formation; required for		
	Spa2p to recruit Mpk1p to shmoo tip during mating;		
	interacts with Cdc12p, AFR1		
SLT2	Serine/threonine MAP kinase involved in regulating the	1.9	0.00472
	maintenance of cell wall integrity and progression through		9
	the cell cycle; regulated by the PKC1-mediated signaling		
	pathway		
PST1	Cell wall protein that contains a putative GPI-attachment	1.9	0.00472
	site; secreted by regenerating protoplasts; up-regulated by		9
	activation of the cell integrity pathway, as mediated by		
	Rlm1p; upregulated by cell wall damage via disruption of		
	FKS1		
GSC2	Catalytic subunit of 1,3-beta-glucan synthase, involved in	1.6	1.04E-
	formation of the inner layer of the spore wall; activity		03
	positively regulated by Rho1p and negatively by Smk1p;		
	has similarity to an alternate catalytic subunit, Fks1p		
	(Gsc1p), GSC2		
RLM1	MADS-box transcription factor, component of the protein	1.2	1.44E-
	kinase C-mediated MAP kinase pathway involved in the	1.2	03
	maintenance of cell integrity; phosphorylated and		02
	activated by the MAP-kinase Slt2p, RLM1		
VHS3	Functionally redundant (see also SIS2) inhibitory subunit	1.2	3.03E-
V1155	of Ppz1p, a PP1c-related ser/thr protein phosphatase Z	1.2	03
	isoform; synthetically lethal with sis2; putative		05
	phosphopantothenoylcysteine decarboxylase involved in		
MTL1	coenzyme A biosynthesis, VHS3	1.2	0.50312
	Protein with both structural and functional similarity to	1.2	
	Mid2p, which is a plasma membrane sensor required for		4
	cell integrity signaling during pheromone-induced		
	morphogenesis; suppresses rgd1 null mutations	1.0	5 (1)
ROM1	GDP/GTP exchange protein (GEP) for Rho1p; mutations	1.0	5.61E-
	are synthetically lethal with mutations in rom2, which		03
	also encodes a GEP, ROM1		
SDP1	Stress-inducible dual-specificity MAP kinase	1.0	0.69519
	phosphatase, negatively regulates Slt2p MAP kinase by		8
	direct dephosphorylation, diffuse localization under		
	normal conditions shifts to punctate localization after heat		
	shock		
PTP2	Phosphotyrosine-specific protein phosphatase involved in	1.0	0.02722
	the inactivation of mitogen-activated protein kinase		4
	(MAPK) during osmolarity sensing; dephosporylates		
	Hog1p MAPK and regulates its localization; localized to		
	the nucleus,		
SLT2	Serine/threonine MAP kinase involved in regulating the	0.9	0.05730
	maintenance of cell wall integrity and progression through		8
	the cell cycle; regulated by the PKC1-mediated signaling		-
	pathway		
	Protein rich in serine and threonine residues involved in	0.8	0.03723

	protein kinase C signaling pathway, which controls cell integrity; overproduction suppresses pkc1 mutations		1
WSC3	Partially redundant sensor-transducer of the stress- activated PKC1-MPK1 signaling pathway involved in maintenance of cell wall integrity; involved in the response to heat shock and other stressors; regulates 1,3- beta-glucan synthesis	0.7	0.11659 8
PRM5	Pheromone-regulated protein, predicted to have 1 transmembrane segment; induced during cell integrity signaling	0.7	1
РКН2	Serine/threonine protein kinase involved in sphingolipid- mediated signaling pathway that controls endocytosis; activates Ypk1p and Ykr2p, components of signaling cascade required for maintenance of cell wall integrity; redundant with Pkh1p	0.6	0.60056 9
РКН3	Protein kinase with similarity to mammalian phosphoinositide-dependent kinase 1 (PDK1) and yeast Pkh1p and Pkh2p, two redundant upstream activators of Pkc1p; identified as a multicopy suppressor of a pkh1 pkh2 double mutant	0.6	0.82211 8
ROM2	GDP/GTP exchange protein (GEP) for Rho1p and Rho2p; mutations are synthetically lethal with mutations in rom1, which also encodes a GEP	0.6	1
GFA1	Glutamine-fructose-6-phosphate amidotransferase, catalyzes the formation of glucosamine-6-P and glutamate from fructose-6-P and glutamine in the first step of chitin biosynthesis	0.5	1
MID2	O-glycosylated plasma membrane protein that acts as a sensor for cell wall integrity signaling and activates the pathway; interacts with Rom2p, a guanine nucleotide exchange factor for Rho1p, and with cell integrity pathway protein Zeo1p	0.5	1
РТР3	Phosphotyrosine-specific protein phosphatase involved in the inactivation of mitogen-activated protein kinase (MAPK) during osmolarity sensing; dephosporylates Hog1p MAPK and regulates its localization; localized to the cytoplasm	0.4	1
TUS1	Guanine nucleotide exchange factor (GEF) that functions to modulate Rho1p activity as part of the cell integrity signaling pathway; multicopy suppressor of tor2 mutation and ypk1 ypk2 double mutation; potential Cdc28p substrate	0.4	1
BCK1	Mitogen-activated protein (MAP) kinase kinase kinase acting in the protein kinase C signaling pathway, which controls cell integrity; upon activation by Pkc1p phosphorylates downstream kinases Mkk1p and Mkk2p	0.3	1
RHO5	Non-essential small GTPase of the Rho/Rac subfamily of Ras-like proteins, likely involved in protein kinase C (Pkc1p)-dependent signal transduction pathway that controls cell integrity	0.3	1

1
1
_
1
1
1
1
1
1
1
1
1
1
1
1
_


	for optimal induction of heat-shock genes in response to oxidative stress; involved in osmoregulation		
RHO1	GTP-binding protein of the rho subfamily of Ras-like proteins, involved in establishment of cell polarity; regulates protein kinase C (Pkc1p) and the cell wall synthesizing enzyme 1,3-beta-glucan synthase (Fks1p and Gsc2p)	-0.3	1
SW16	Transcription cofactor, forms complexes with DNA- binding proteins Swi4p and Mbp1p to regulate transcription at the G1/S transition; involved in meiotic gene expression; localization regulated by phosphorylation; potential Cdc28p substrate	-0.5	0.68630 7
FKS1	Catalytic subunit of 1,3-beta-D-glucan synthase, functionally redundant with alternate catalytic subunit Gsc2p; binds to regulatory subunit Rho1p; involved in cell wall synthesis and maintenance; localizes to sites of cell wall remodeling	-0.6	1
LRG1	Putative GTPase-activating protein (GAP) involved in the Pkc1p-mediated signaling pathway that controls cell wall integrity; appears to specifically regulate 1,3-beta-glucan synthesis	-0.8	0.18536 7
WSC2	Partially redundant sensor-transducer of the stress- activated PKC1-MPK1 signaling pathway involved in maintenance of cell wall integrity and recovery from heat shock; secretory pathway Wsc2p is required for the arrest of secretion response,	-1.2	0.45421 4
Sulfur met	abolism		
JLP1	Fe(II)-dependent sulfonate/alpha-ketoglutarate dioxygenase, involved in sulfonate catabolism for use as a sulfur source, contains sequence that closely resembles a J domain (typified by the E. coli DnaJ protein), JLP1	6.7	1.80E- 05
AGP3	Low-affinity amino acid permease, may act to supply the cell with amino acids as nitrogen source in nitrogen-poor conditions; transcription is induced under conditions of sulfur limitation, AGP3	5.1	3.92E- 06
PDC6	Minor isoform of pyruvate decarboxylase, decarboxylates pyruvate to acetaldehyde, involved in amino acid catabolism; transcription is glucose- and ethanol- dependent, and is strongly induced during sulfur limitation, PDC6	4.3	3.70E- 04
BDS1	Bacterially-derived sulfatase required for use of alkyl- and aryl-sulfates as sulfur sources, BDS1	3.2	7.60E- 05
GTO1	Omega-class glutathione transferase; induced under oxidative stress; putative peroxisomal localization, GTO1	2.2	9.17E- 05
MHT1	S-methylmethionine-homocysteine methyltransferase, functions along with Sam4p in the conversion of S- adenosylmethionine (AdoMet) to methionine to control the methionine/AdoMet ratio, MHT1	2.0	8.18E- 04
MET8	Bifunctional dehydrogenase and ferrochelatase, involved	1.9	4.47E-
		-	•

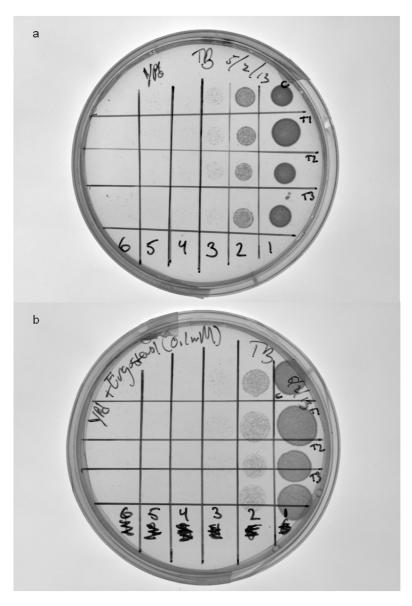
	in the biosynthesis of siroheme, a prosthetic group used by sulfite reductase; required for sulfate assimilation and methionine biosynthesis, MET8		04
YLL058W	Putative protein of unknown function with similarity to Str2p, which is a cystathionine gamma-synthase important in sulfur metabolism; YLL058W is not an essential gene,	1.8	3.34E- 03
MET32	Zinc-finger DNA-binding protein, involved in transcriptional regulation of the methionine biosynthetic genes, similar to Met31p, MET32	1.6	4.12E- 04
THI4	Thiazole synthase, catalyzes formation of the thiazole moiety of thiamin pyrophosphate; required for thiamine biosynthesis and for mitochondrial genome stability, THI4	1.6	1.27E- 04
MET28	Transcriptional activator in the Cbf1p-Met4p-Met28p complex, participates in the regulation of sulfur metabolism, MET28	1.6	1.74E- 04
MET30	F-box protein containing five copies of the WD40 motif, controls cell cycle function, sulfur metabolism, and methionine biosynthesis as part of the ubiquitin ligase complex; interacts with and regulates Met4p, localizes within the nucleus, MET30	1.6	2.18E- 03
MET2	L-homoserine-O-acetyltransferase, catalyzes the conversion of homoserine to O-acetyl homoserine which is the first step of the methionine biosynthetic pathway, MET2	1.5	1.79E- 04
ECM4	Omega class glutathione transferase; not essential; similar to Ygr154cp; green fluorescent protein (GFP)-fusion protein localizes to the cytoplasm, ECM4	1.4	2.94E- 04
GSH1	Gamma glutamylcysteine synthetase catalyzes the first step in glutathione (GSH) biosynthesis; expression induced by oxidants, cadmium, and mercury, GSH1	1.3	5.85E- 04
GTT2	Glutathione S-transferase capable of homodimerization; functional overlap with Gtt2p, Grx1p, and Grx2p, GTT2	1.2	1.15E- 03
YHR112C	Putative protein of unknown function; green fluorescent protein (GFP)-fusion protein localizes to the cytoplasm,	1.2	1.65E- 03
MET3	ATP sulfurylase, catalyzes the primary step of intracellular sulfate activation, essential for assimilatory reduction of sulfate to sulfide, involved in methionine metabolism, MET3	1.1	9.38E- 03
GTT1	ER associated glutathione S-transferase capable of homodimerization; expression induced during the diauxic shift and throughout stationary phase; functional overlap with Gtt2p, Grx1p, and Grx2p, GTT1	1.0	9.16E- 03
SAM2	S-adenosylmethionine synthetase, catalyzes transfer of the adenosyl group of ATP to the sulfur atom of methionine; one of two differentially regulated isozymes (Sam1p and Sam2p), SAM2	0.9	8.18E- 03


Iron ion ho	omeostasis		
HMX1	ER localized, heme-binding peroxidase involved in the	2.5	9.76E-
	degradation of heme; does not exhibit heme oxygenase		03
	activity despite similarity to heme oxygenases; expression		
	regulated by AFT1, HMX1		
SIT1	Ferrioxamine B transporter, member of the ARN family	2.3	1.28E-
	of transporters that specifically recognize siderophore-		03
	iron chelates; transcription is induced during iron		
	deprivation and diauxic shift; potentially phosphorylated		
	by Cdc28p, SIT1		
FIT2	Mannoprotein that is incorporated into the cell wall via a	2.0	6.39E-
	glycosylphosphatidylinositol (GPI) anchor, involved in		05
	the retention of siderophore-iron in the cell wall, FIT2		
ARN2	Transporter, member of the ARN family of transporters	1.9	1.38E-
	that specifically recognize siderophore-iron chelates;		03
	responsible for uptake of iron bound to the siderophore		
	triacetylfusarinine C, ARN2		
FIT3	Mannoprotein that is incorporated into the cell wall via a	1.7	5.54E-
	glycosylphosphatidylinositol (GPI) anchor, involved in		03
	the retention of siderophore-iron in the cell wall, FIT3		
TIS11	mRNA-binding protein expressed during iron starvation;	1.4	3.07E-
	binds to a sequence element in the 3'-untranslated regions		03
	of specific mRNAs to mediate their degradation; involved		
	in iron homeostasis, TIS11		
PCA1	Cadmium transporting P-type ATPase; may also have a	1.2	7.40E-
	role in copper and iron homeostasis; S288C and most		03
	other lab strains contain a G970R mutation which		
	eliminates normal cadmium transport function, PCA1		
FRE6	Putative ferric reductase with similarity to Fre2p;	1.1	7.08E-
	expression induced by low iron levels, FRE6		03
ATX1	Cytosolic copper metallochaperone that transports copper	1.1	9.51E-
	to the secretory vesicle copper transporter Ccc2p for		03
	eventual insertion into Fet3p, which is a multicopper		
	oxidase required for high-affinity iron uptake, ATX1		

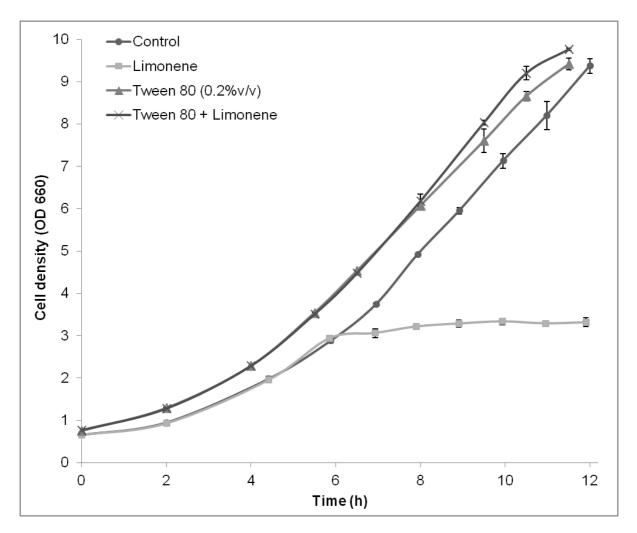
^a The log₂ ratio of treated/control.

^b The Bonferroni-corrected p values.

SI Fig 2. Anaerobic vs. aerobic growth curves. 107 mg/L of limonene was added at midexponential phase. Error bars represent one SD above and below the mean for biological triplicates.



SI Fig 3. GC-MS chromatogram of limonene (RT = 7.9 min) sampled from challenged cultures after 6 h incubation at 30°C. The black line is limonene from anaerobic flasks (with no limonene oxide formation) and the blue line represents limonene from aerobic cultures (limonene oxide compounds at 11.5 min, peak 1 = limonene oxide, cis and peak 2 = limonene oxide, trans.). At 12 after inoculation (6 h after limonene addition), 1 mL of isopropyl


myristate (IPM) was added to the culture (~ 22 ml), vortexed and harvested (1 min, 4025 rcf). The top IPM phase containing limonene was removed and 1 μ L was resuspended in 1 mL of a 1:4 toluene:hexane solution. The GC-MS analysis was carried out using the setting described in the Materials and Methods section with the following changes: 1 μ L of sample was injected and the oven temperature was set to 70°C, held for 10 min then followed by a temperature ramp of 40 °C/min to 300°C and held for 3 min. Detection was achieved in scan mode at 9.26 scans/sec from 30-300 amu.

```
Glucose
 AcCoA
      ERG10 (0.10)
 AcAcCoA
    ERG13 (-0.43)
HMG-CoA
      HMG2 (0.09)
HMG1 (0.56)
Mevalonate
     ERG12 (-0.07)
Mevalonate-P
   ERG8 (-0.35)
  IPP
      MVD1 (0.53)
   GPP
      ERG20 (0.18)
   FPP
      ERG9 (0.79)
Squalene
          ERG4 (0.17)
          ERG6 (0.60)
Ergosterol
```

SI Fig 4. Transcript levels of genes associated with ergosterol biosynthesis. Numbers in the parenthesis represent the log_2 fold changes of that particular gene (treated/control). None of these genes were differentially expressed (Bonferroni-corrected p < 0.01).

SI Fig 5. Effect of exogenous ergosterol on the growth and viability. Yeast cultures were dosed with limonene as described in the Materials and Methods. Cells were harvested and washed and diluted on rich medium (YPD) plates as described by Liu, et al (1). (a) YPD and (b) YPD + 0.1 mM ergosterol/Tween 80 (0.25% v/v). The top row of each plate is the untreated control and rows 2-4 represent biological replicates for limonene-treated cells at varying dilutions (10^{-1} - 10^{-6}). Image was taken at 24 h. Tween 80 did cause spreading of the culture droplet on the surface in the ergosterol supplemented plate causing an increase in the diameter.

SI Fig 6. Dose response growth curves in the presence of limonene and limonene + surfactant. 107 mg/L of limonene was added at mid-exponential phase. Limonene was administered in the presence and absence of Tween 80 (0.2% v/v). Error bars represent one SD above and below the mean for biological triplicates.

References:

1. Liu, J., Y. Zhu, G. Du, J. Zhou, and J. Chen. 2013. Exogenous ergosterol protects *Saccharomyces cerevisiae* from d-limonene stress. J. Appl. Microbiol. **114**:482-491.