Supplementary Methods

1 Chernoff bound to define prevalence at the sequencing depth employed by this study

Assume that event e occurs with probability p and further assume that there are n trials. Then, the expected number of occurrences of e is:

$$
\mu = \mathbb{E}\left[\sum_{i=1}^{n} p\right] = np. \tag{1}
$$

Given that the *n* trials are independent, Chernoff bound $[1]$ applied to our setting tells us the following:

Theorem 1 Given n independent trials, where in each trial event e occurs with probability p , then for $0 < \epsilon < 1$, the the probability of seeing X occurrences of e as a function of ϵ and μ (given in Equation (1)) is bounded as follows:

$$
Pr[X < (1 - \epsilon)\mu] < e^{-\mu \epsilon^2/2}.\tag{2}
$$

Given that we need to evaluate the probability of obtaining at least one sample of e with 95% confidence, we are interested in computing the value of the parameter μ (and thus also p) for which Pr $[X \leq 1] < 0.05$. Thus, setting in Equation (2), $(1 - \epsilon)\mu = 1$ we get that

$$
\epsilon = \frac{\mu - 1}{\mu}
$$

.

Also, since we want $Pr[X < 1]$ to be bounded by 0.05, we get that

$$
e^{-\mu\epsilon^2/2} \leq 0.05 \tag{3}
$$

$$
-\mu\epsilon^2/2 \le \log(0.05) \tag{4}
$$

$$
\mu^2 + (2\log(0.05) - 2)\mu + 1 \geq 0. \tag{5}
$$

Solving the above inequality for μ (and after doing the necessary roundings) we get:

$$
\mu \leq 0.1272
$$

and

 $\mu \geq 7.86$.

Clearly, for values of $\mu \leq 0.1272$, the value of $\epsilon = \frac{\mu - 1}{\mu}$ $\frac{-1}{\mu}$ is negative and thus these values of μ can be ignored. Thus, we conclude that as long as $\mu \geq 7.86$ we get at least one sample of e in our trials. If we want to compute the smallest value of p for which this is possible we get by Equation (1) that

$$
pn \geq 7.86
$$

or

$$
p \ge \frac{7.86}{n}.
$$

Plugging in $n = 1709$ we get that for $p > 0.0052$ we are 95% confident that we will see at least one sample of e.

References

[1] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.